

BIOINFORMATICS:
Databases and Systems

This page intentionally left blank.

BIOINFORMATICS:
Databases and Systems

edited by

Stanley Letovsky

KLUWER ACADEMIC PUBLISHERS
New York, Boston, Dordrecht, London, Moscow

eBook ISBN: 0-306-46903-0
Print ISBN: 0-792-38573-X

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://www.kluweronline.com
and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com

To Tish, Emily, Miles and Josephine

This page intentionally left blank.

TABLE OF CONTENTS

INTRODUCTION .. .1
Stanley Letovsky

DATABASES

1

2

NCBI: INTEGRATED DATA FOR MOLECULAR BIOLOGY RESEARCH 11

Karl Sirotkin
HOVERGEN: COMPARATIVE ANALYSIS OF HOMOLOGOUS VERTEBRATE

GENES .. 21

WIT/WIT2: METABOLIC RECONSTRUCTION SYSTEMS.... 37
Manolo Gouy

3
Ross Overbeek, Niels Larsen, Natalia Maltsev, Gordon D. Pusch, and
Evgeni Selkov

Peter D. Karp and Monica Riley

Minoru Kanehisa

Alan F. Scott, Joanna Amberger, Brandon Brylawski and Victor A.
McKusick

Stanley Letovsky

Michael Krawczak, Edward V. Ball, Peter Stenson and David N. Cooper

4 ECOCYC: THE RESOURCE AND THE LESSONS LEARNED.............................. 47

5 KEGG: FROM GENES TO BIOCHEMICAL PATHWAYS ... 63

6 OMIM: ONLINE MENDELIAN INHERITANCE IN MAN 77

7

8

9

GDB: INTEGRATING GENOMIC MAPS .. 85

HGMD: THE HUMAN GENE MUTATION DATABASE 99

SENSELAB: MODELING HETEROGENOUS DATA ON THE NERVOUS SYSTEM

Prakash Nadkarni, Jason Mirsky, Emmanouil Skoufos, Matthew Healy,
Michael Hines, Perry Miller and Gordon Shepherd

... 105

10 THE MOUSE GENOME DATABASE AND THE GENE EXPRESSION DATABASE:

GENOTYPE TO PHENOTYPE. 11
Janan T. Eppig, Joel E. Richardson, Judith A. Blake, Muriel T. Davisson,
James A. Kadin, and Martin Ringwald

THE EDINBURGH MOUSE ATLAS: BASIC STRUCTURE AND INFORMATICS129
Richard A Baldock, Christophe Dubreuil, Bill Hill and Duncan Davidson

FLYBASE: GENOMIC AND POST-GENOMIC VIEWPOINTS 141

The FlyBase Consortium

11

12

9

Laurent Duret, Guy Perrière and

viii

13

14

MAIZEDB: THE MAIZE GENOME DATABASE.. 151

AGIS: USING THE AGRICULTURAL GENOME INFORMATION SYSTEM 163
Mary Polacco and Ed Coe

Stephen M. Beckstrom-Sternberg and D. Curtis Jamison

Mary K.B. Berlyn
15 CGSC: THE E.COLI GENETIC STOCK CENTER DATABASE175

SYSTEMS

16 OPM: OBJECT-PROTOCOL MODEL DATA MANAGEMENT TOOLS ‘97 187
Victor M. Markowitz, I-Min A. Chen, Anthony S. Kosky, and Ernest Szeto

BIOKLEISLI: INTEGRATING BIOMEDICAL DATA AND ANALYSIS PACKAGES 201
Susan B. Davidson, O. Peter Buneman, Jonathan Crabtree, Val Tannen,

17

G. Christian Overton and Limsoon Wong

18 SRS: ANALYZING AND USING DATA FROM HETEROGENOUS TEXTUAL

DATABANKS.. 213
Phil Carter, Thierry Coupaye, David P. Kreil, and Thure Etzold

19 BIOLOGY WORKBENCH: A COMPUTING AND ANALYSIS ENVIRONMENT FOR

THE BIOLOGICAL SCIENCES ... 233
Roger Unwin, James Fenton. Mark Whitsitt, Curt Jamison, Mark Stupar,

Eric Jakobsson and Shankar Subramaniam

20 EBI: CORBA AND THE EBI DATABASES ... 245
Kim Jungfer, Graham Cameron and Tomas Flores

21 BIOWIDGETS: REUSABLE VISUALIZATION COMPONENTS FOR

BIOINFORMATICS... 255
Jonathan Crabtree, Steve Fischer, Mark Gibson and G. Christian Overton

Jean Thierry-Mieg, Danielle Thierry-Mieg and Lincoln Stein

22 ACEDB:THE ACE DATABASE MANAGER . 265

23 LABBASE: DATA AND WORKFLOW MANAGEMENT FOR LARGE SCALE

BIOLOGICAL RESEARCH.. 279

INDEX ... 293
Nathan Goodman, Steve Rozen, and Lincoln Stein

INTRODUCTION

Stanley Letovsky

Bioinformatics is a field that has exploded into the awareness of biomedical,
pharmaceutical and agricultural researchers in the last few years, in parallel with the
equally new field of genomics. The central idea of genomics, first articulated by a
few visionary biologists and funding officials at the US Department of Energy and
National Institutes of Health in the 1980’s, was to scale up the laboratory techniques
of molecular biology, and to bring to biology a degree of completeness that seemed
revolutionary at the time. Rather than mapping one gene at a time, people began to
develop whole genome maps at specified marker densities. Rather than sequencing a
gene at a time, they proposed to sequence the entire human genome, a project one
hundred thousand times larger. Although the goal of a complete sequence of the 3000
megabase human genome remains in the future1, the significance of this vision has
already been demonstrated many times over. Major milestones to date include the
first complete genomic sequencing in 1995 of the 2 MB genome of the bacterium
Haemophilus influenzae [2] by a group at the Institute for Genomic Research
(TIGR), followed by some dozen other bacterial species since then; of the first
single-celled eukaryote in 1997, the budding yeast Saccharomyces cereviseae, with a
genome size of 12 MB, by an international consortium of academic laboratories [3],
and the completion in 1998 of the first multicellular eukaryote, the nematode worm
Caenorhabditis elegans, with a genome size of about 100MB [4]. Projects are well
under way to produce the genomic sequences of the fruitfly Drosophila melanogaster
[5] and the mustard weed Arabidopsis thaliana [6], important genetic model
organisms for the animal and plant kingdoms, respectively. Discussion is under way
on a public project to sequence the mouse, which is a crucial model organism for the
mammals.

In addition to genome sequencing, a number of other large-scale
technologies have been developed to shed new light on the structure and function of
organismal genomes. These include EST sequencing, which allows gene RNA
products to be observed more directly than genomic sequencing permits;
transcriptional profiling methods such as microchip-based hybridization arrays, that
allow measurement of cells’ gene expression levels; yeast 2-hybrid systems to allow
the construction of protein interaction maps; radiation-hybrid mapping which allow

¹ The most recent estimate of the completion date for the public sector human
sequencing project is the end of 2003 [1], with a “rough draft” now expected by
mid-2000.

2

genome maps to be built (in some species) without reliance on cumbersome natural
recombination; and high-throughput screening methods which allow the biological
effects of large small-molecule compound libraries to be rapidly assessed. If
genomics at present is using tomorrow’s technologies today, often before all the
kinks have been worked out, numerous groups are hard at work on the technologies
of the day after tomorrow. Examples include protein profiling, or proteomics, which
surveys the protein content of cells and tissues using high-resolution mass
spectrometry; metabolic profiling, which measures the small molecule content of
tissues; cheap polymorphism detection methods; and nanofabricated laboratory-on-a-
chip technologies that may provide the elusive increases in speed and reductions in
cost that have long been sought for “conventional” genomic technologies such as
automated sequencing.

It is against the backdrop of this breakneck technology development and
mass production of genomic data that the field of bioinformatics emerged. People
had of course been applying computers to biological data for years before the term
was coined, and most of the common algorithms for biological sequence comparison
had been invented by 1980. But it was not until the mid-1990’s that the field acquired
a name, and suddenly became respectable, even fashionable. By 1996 it seemed that
every other issue of Science contained an article bemoaning the desperate shortage of
bioinformaticians in academic and industrial labs (e.g. [141).

A crucial parallel development in the larger culture that coincided with the
emergence of genomics and bioinformatics was the explosion of the Worldwide
Web. Vindicating, perhaps, Marshall MacLuhan’s cryptic insight that “the medium is
the message” (or “mass age”), the Web has inserted itself into discipline after
discipline, business after business, unleashing expanding ripples of transformation.
Indeed the Web is one of the few technologies that are developing as fast as
genomics, but the connection between them runs deeper than that. The Web turns out
to be a nearly ideal vehicle for delivering genomic data to the scientific community; it
is hard to imagine what bioinformatics would look like without it.

So what is bioinformatics? Definitions vary with the users of word; related
terms like computational biology are held to be synonyms by some, and by others to
reflect subtle distinctions. In practical terms there are some important distinctions to
be made between the tasks of developing algorithms, of programming databases, and
of curating database content. Computational biology algorithms for sequence
comparison, sequence assembly, sequence classification, motif induction and
recognition, and protein structure prediction have been the subject of several recent
books [7-13] whereas the database system-building and content curation aspects have
received less treatment2. These are perhaps the less glamorous aspects of the field,
more lore than art, but these are also the areas where there seems to be a great hunger

A noteworthy exception is the annual database issue of Nucleic Acids Research
which each January allows public database providers the opportunity to report on
recent developments in their projects. This book is intended to provide a
complementary resource, with more freedom to explore particular aspects of the
systems in depth.

²

3

for wisdom. Where algorithms tend to get implemented, packaged and shared as
black boxes, systems get built over and over in different establishments, and people
facing the same problems for the first time are always peppering their more
experienced counterparts with questions like “did you use approach/product/standard
X in your project? Was it any good? How do you keep the data up to date? How do
you enforce content quality?” This book was conceived as a resource for people
asking such questions, whose numbers seem to be doubling every six months at
present. It is not possible to give definite answers to these sorts of questions – yes
you should or no you shouldn’t use ACEDB or CORBA or OPM or whatever. The
software changes from month to month, the problems change, the options change.
Today’s technological rising star may be tomorrow’s horror story, and vice versa.
Even the insights derived from bitter experience can be questionable – did you really
diagnose the problem correctly, and if you build the next system the way you now
think you should have built the last one, will the result really be better or will you
simply encounter a different, equally painful set of tradeoffs? Nonetheless experience
is better than no experience, so I asked the contributors to this volume to include in
their articles lessons learned from developing their systems, and to write down their
thoughts on how they might do things differently -- or similarly -- if they were doing
it again.

The contributors represent what I hope will be an interesting, albeit
incomplete, sample of some of the most exciting work being done in bioinformatics
today. The articles are somewhat arbitrarily divided into two sections: Databases and
Software. The intent was that articles that focused more on content would fall into the
former category, while articles that focused on technology would fall into the latter,
but there were a number of borderline cases. My hope is that this collection will be of
interest to readers who have arrived at the interdisciplinary world of bioinformatics
either from the biology side or the computational side (as well as those more distant
migrants from literature, history, business, etc.). The database articles may be more
intelligible to readers with more of a biology background, and the software articles to
readers with more software engineering; hopefully there is something to interest (and
confuse) just about everyone.

The articles in the Database section represent some of the established (or in
some cases recently disestablished!) citizens of the database world, as well some
promising new efforts. The first few articles describe systems focused on the
molecular level; these are mostly multispecies, comparative systems. Karl Sirotkin of
NCBI describes some of the software underpinnings of Entrez, the most widely used
molecular biology resource. The article on HOVERGEN by Duret et al describes an
interesting new approach to integrating phylogenetic and coding sequence data into
an organized whole. Several articles focus on the fast-developing area of metabolic
and regulatory pathway databases, including those by Overbeek et al on WIT,
Kanehisa on KEGG, and Karp and Riley on EcoCyc.

The remaining articles in this section describe primarily databases organized
around organisms rather than molecules. Alan Scott describes the extensive
literature-based curation process used to maintain the high quality standards of
OMIM, the fundamental resource on human genetic disease. My own article looks at

4

methods of integrating maps in the erstwhile human Genome Database (GDB).
Cooper et al describe their database of human mutations, an early entry in the
increasingly important field of variation databases.

The article by Nadkarni et al provides a link to the developing field of
neuroinformatics, which is concerned with databases of such neuroscience data such
as structural (MR or CT) or functional (PET, fMRI) images of the brain, histological
slices, EEG and MEG data, cellular and network models, single cell recordings, and
so on. [15]. This article is included not only as a representative of neuroinformatic
work, but because it is one of the few current neuroinformatics efforts that links the
molecular scale of bioinformatics to the neurophysiological scale, since it addresses
the physiology of olfaction from the receptor sequences up to cellular and network
physiology.

Eppig et al describe the Mouse Genome Database (MGD) and its companion
system, the mouse Gene Expression Database (GXD). One of the key challenges for
the next generation of databases is to begin to span the levels of organization between
genotype and phenotype, where the processes of development and physiology reside.
Baldock et al describe an anatomical atlas of the mouse suitable for representing
spatiotemporal patterns of gene expression; the Edinburgh (Baldock et al) and
Jackson Laboratory (Eppig et al) projects are collaborating to link the genetic and
spatial databases together. The plant kingdom, which has recently experienced a
rapid acceleration of genomic scrutiny in both the private and public sectors, is
represented in articles on MaizeDB by Polacco and Coe and on the USDA’s
Agricultural Genome Information System by Beckstrom-Sternberg and Jamison.
Gelbart et al describe the rich integration of genomic and phenotypic data on
Drosophila in Flybase. Mary Berlyn describes the E.coli Genetic Stock Center
Database, which provides query-by-genotype access to the stock center’s extensive
collection of mutant strains.

The Software section contains a number of articles that address one or
another aspect of the problem of integrating data from heterogenous sources. There
are two common ways to achieve such integration: federation, in which the data
continue to reside in separate databases but a software layer makes them act as a
single integrated collection, and physical integration, often called warehousing, in
which the data are combined into a single repository for querying purposes. Both
approaches involve transforming the data into a common format; federation does the
transformation at query time, whereas warehousing does it as a preprocessing step.
One consequence of this difference is that warehouses are more difficult to keep
current as the underlying databases are updated. The choice of federation vs.
warehousing has performance implications as well, though they are not always easy
to predict. A warehouse can map in a straightforward way to a DBMS product, and
make full use of the tuning and optimization capabilities of that product. Federated
systems must pay the price of translating queries at run-time, possibly doing
unoptimized distributed joins of query fragments across multiple databases, and
converting data into the standard form. It is also possible for federated systems to

5

gain performance by distributing queries across multiple processors in parallel,
though such gains are rare in practice.

The OPM system, described in the article by Markowitz et al, uses a
middleware layer to impose a uniform object-oriented data model3 on a potentially
heterogeneous set of back-end databases. Davidson et al’s BioKleisli takes a similar
approach but uses as its common data model a model adopted from logic
programming which is similar to the relational model but more powerful.

The SRS system described by Carter et al occupies an interesting middle
ground between federation and warehousing. In SRS the datasets are warehoused in a
single computer for searching, but remain organized in their original formats. New
databases are added to the warehouse by supplying parsers for their flat-file formats;
the files themselves are unaffected, which makes updating an SRS system uniquely
simple compared to most warehouse designs.

The Biology Workbench project exemplifies another approach to data
integration made possible by the Web. It does not physically bring the data together
like SRS, nor does it create a virtual unified database like BioKleisli or the OPM
multidatabase capability. Instead, it integrates at the level of the front end by
providing a thin veneer of user interface which provides access to a number of
capabilities on the Web. A similar concept is employed by the BCM Search Launcher
[16].

A key challenge in bioinformatics software development is the need to
continuously evolve software systems to incorporate or adapt to new technologies
while maintaining compatibility with existing (legacy) systems. Traditional software
development practice has been described in terms of a “waterfall” model, in which
development progresses continuously “downstream” from requirements analysis to
design to implementation. This model provides little guidance to bioinformatics
developers, whose task more closely resembles that of an auto mechanic trying to
redesign a car while driving it. The rapid prototyping model, in which systems are
built by successive approximation from crude first attempts, comes closer to the
mark, but still assumes the luxury of an extended prototyping phase. The component -
based design model, in which systems can be quickly assembled from reusable
components, is one that many in bioinformatics are pinning their hopes on. Jungfer et
al advocate the use of CORBA, an industry standard for designing distributed object-
oriented software systems, which has been adopted at the European Bioinformatics
Institute and elsewhere as a middleware layer to handle communication between back

³ A data model is a set of primitive constructs, such as sets, relations or objects,
which can be used to build database schemas. The most common data models are the
relational and the object-oriented. A data modelling language expresses the concepts
of some data model in a specific notation for writing down schemas; the SQL
language used in relational databases includes a data modelling component called the
create table statement. A schema describes the structure of data in a particular
database. A database management system (DBMS) such as OracleTM or Sybase™
interprets a schema definition written in a data modelling language as instructions for
creating a database with the specified structure.

6

end databases and front-end viewers and analysis tools. In contrast to OPM and
BioKleisli, CORBA does not so much offer a standard data model as provide a
mechanism for isolating system components from the design constraints that might be
imposed by choosing particular data models. The Biowidgets article by
Crabtree et al describes an approach to modular software development for
bioinformatics visualization. Biowidgets represents an attempt to apply that modular
design philosophy to the problem of data visualization.

The ACE database manager, described by Jean and Danielle Thierry-Mieg,
is the database kernel of the ACEDB system developed by Jean Thierry-Mieg and
Richard Durbin for the C.elegans genomic database, and subsequently reused widely
by many other projects. The tremendous success of ACEDB over the years can be
attributed to a number of factors, including its biologist-friendly user interface, the
ease with which data can be entered into it, the ease with which its schema can be
modified, the ease with which new visualization and analysis routines can be added
to it, the extensive genomics knowledge incorporated into its standard schema and
software, and its price (free!). At the core of the system is a somewhat non-standard
object-oriented DBMS which over a reasonably wide range of database sizes can
outperform most commercial relational databases at tasks such as retrieving an object
detail view, pulling up annotated sequence, or displaying a genetic map. It is
heartening, in an era when DBMS development has been taken over by large
corporations wielding enormous programming teams, to see that a tiny team of
talented individuals can still write a system which outperforms the commercial
products in many respects.

Laboratory information management systems (LIMS) are a species of
software remote from the experience of many bioinformatics practitioners, for whom
data are something that automatically appear in databases. Those of us who have had
occasion to wander into the more upstream regions of the data production process
encounter a world of robots, sequencing machines, bench biologists, pipettes and 96-
well plates. This world turns out to be full of interesting and exotic software
engineering challenges which are not well served by the current generation of
commercial solutions. Goodman et al present an elegant and general approach to the
problem of laboratory process workflow which they developed for use in the
Whitehead Genome Sequencing Center.

The articles in this book constitute a very incomplete sample of the
interesting systems out there. Notable gaps include databases for such important
model organisms as yeast, C.elegans and Arabidopsis as well as a number of
microbial databases; databases on protein sequences, families, and 3D structures;
expression profile databases, and transcription factor and promoter databases.
Starting points for finding such resources include [17,18].

One final note: in keeping with the rapid pace of change in this field, many
of the authors are no longer at the institutions where the work was performed, and in
some cases the addresses shown are out of date. During the period when this book
was being written (1997 -98), a number of the authors (myself, Markowitz et al, Karp,
Etzold) moved from public sector to private sector positions, and several of the

7

systems described (OPM, BioKleisli, EcoCyc, SRS, WIT, EBI-CORBA) went from
research systems to commercial products.

I would like to express my thanks to the authors for their contributions, and to
Anita Tilotta, Mary Panarelli and Cristina Carandang for their assistance in the
preparation of this book.

References

1.

2.

F.S.Collins et al, New Goals for the US. Human Genome Project: 1998-2003. Science v.282, 23

R.D.Fleischmann et al, Whole-Genome Random Sequencing and Assembly of Haemophilus
influenzae Rd. Science v.269, 28 July 1995, p.496. See also
http://www. tigr.org/tdb/mdb/hidb/hidb.html.
A. Goffeau et al, The Yeast Genome Directory, Nature 387 (suppl.) 1-105 (1997). See also
http://genome-www.stanford.edu/Saccharomyces/.
The C.elegans Sequencing Consortium, Genome Sequence of the Nematode C.elegans: A Platform
for Investigating Biology, Science v.282 11 Dec 1998 p.2012 and other articles in same issue. See
also the C. elegans Project Web page http://www.sanger.ac.uk/Projects/C_elegans/.
The Berkeley Drosophila Genome Project, http://www.fruitfly.org/.
D.W.Meinke et al, Arabidopsis thaliana: A Model Plant for Genomic Analysis, Science v.282, 23
October 1998, p.662. See also Arabidopsis thaliana database: http://genome-
www.stanford.edu/Arabidopsis/.
M.S. Waterman. Introduction to Computational Biology: Maps, sequences and genomes. Chapman
& Hall 1995.
R.Durbin, S.Eddy, A.Krogh, G.Mitchison. Biological Sequence Analysis: probabilistic models of
proteins and nucleic acids. Cambridge University Press (1998)
Steven Salzberg, David Searls, and Simon Kasif, editors. Computational Methods in Molecular
Biology, Elsevier Science (1998).

P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach MIT Press 1998.

A.D.Baxevanis and B.F.F.Ouellette, Eds. Bioinformatics: A Practical Guide to the Analysis of
Genes and Proteins. Wiley-Interscience 1998.

M.J.Bishop, ed. Guide to Human Genome Computing, 2nd edition Academic Press 1998.

M.J. Bishop, editor: Nucleic Acid and Protein Databases and How to Use Them, Academic Press,
in press 1998.

E. Marshall. Bioinformatics: Hot Property: Biologists Who Compute Science 1996 June 21; 272:

Oct 1998, pp.682-689.

3.

4.

5.
6.

7.

8.

9.

10.

11.

12.

13.

14.
1730-1732.

15.

16.

The Human Brain Project Web Server, http:/NWW-HBP.scripps.edu.

K.Worley. BCM Search Launcher http://kiwi.imgen.bcm.tmc.edu:8088/search-
launcher/launcher.html.

17. WWW Virtual Library of Biomolecules, http://golgi.harvard.edu/sequences.html.

18. WWW Virtual Library of Biosciences, http://golgi.harvard.edu/biopages.html

This page intentionally left blank.

DATABASES

This page intentionally left blank.

1 NCBI: INTEGRATED DATA FOR
MOLECULAR BIOLOGY

RESEARCH
Karl Sirotkin

Nat iona l C e n t e r f o r B i o t e c h n o l o g y I n f o r m a t i o n , N a t i o n a l
L ibrary of M e d i c i n e , N a t i o n a l l n s t i t u t e s of Hea l th ,

B e t h e s d a , M D 20894

Summary

Since 1992 the National Center for Biotechnology Information (NCBI) has provided
integrated access to all public genetic sequence information and its associated
annotation, as well as the citations and abstracts from the published literature
referenced by the genetic sequence records. This chapter describes the main
database that contains the genetic sequence data used by this integrated access, and
how these data are linked both to other sequences and to the published literature.
Entrez is the application used for accessing most of these data and their links and it
can be used on a wide variety of hardware platforms. More recently, Web browser-
based Entrez access has also been available (URL:
http://www.ncbi.nlm.nih.gov/Entrez/). Subsets of these data are also available for
Blast searching. It is hoped that this chapter will be a useful resource for both
software developers and end users of this data.

Introduction

Interconnections between data help to integrate them. NCBI defines interconnections
between genetic sequence data, structure data, taxonomic data, and literature
references. These links may also be between the same type of records, for example,
between literature articles. Articles are linked as similar using term content statistics
[1,2,3]. Links between genetic sequence records are based on Blast sequence
comparisons [4], linking similar, and thus possibly homologous sequences. Links
between structure records are based on Vast structure comparisons [5], linking
structures that tend to be similar.

12

Figure 1 : Data interconnected by NCBI.

Figure I : Hexagons represent data that has been integrated, curved lines represent links between
similar records, arid straight lines between hexagons represent links between different data types,
reciprocally linked, as described in the text. Dotted lines represent links under development.

Each record of one type can also link, reciprocally, to records of other types.
Citations in the genetic sequence records determine links between the literature and
genetic sequence information. Proteins translated from nucleic acid sequences, are
linked to those sequences. Sequences can also be retrieved based on the phylogeny
of the organism from which they come.

The data integrated by NCBI has recently been expanded. Now, most of the
biological literature is available in a new database, PubMed, that includes all
MEDLINE records plus some additional records. Links to electronic full-text articles
have also been added where possible. Genomic and chromosomal maps linked to
sequence information are available. A curated taxonomic tree is maintained [6] for
organisms identified by the authors of the sequence submissions as the source of the
genetic sequence data. This tree is independently available on the web
(http://www.ncbi.nlm.nih.gov/ Taxonomy/taxonomy/home.html). Subsets of
sequence records from organisms at taxonomic subtrees can be retrieved.

The rest of this chapter describes the management of the sequence data
interconnected by NCBI. This data is represented by the two lower hexagons in

13

figure 1, and all flows into the ID database, which is described in a subsequent
section.

Conversion to ASN.l

Transforming data into the same format allows them to be used by software
independently of the original source, a major requirement for integration. Within this
uniform format the accuracy of the identifiers used to link, or point, to other records
determines the accuracy and actual meaning of the links themselves. For literature
articles, NCBI has added an integral identifier, the PubMed identifier. For
convenience, many articles contain both a MEDLINE unique identifier and a
PubMed identifier. Genetic sequence identifiers are more complex and can occur in
different forms and places within each data record. Before this integration and use of
sequence identifiers can be explained, the way in which NCBI represents the data
must be clear.

So that the databases and other later applications can use a common format and be
insulated from parsing the input data, the diverse streams of data are converted to
Abstract Syntax Notation (ASN. 1), an international standard [7]. When using
ASN.l, one file describes the format to which other files (messages) of data must
correspond. This file can be considered the definition of the message format. The
data conforming to the message format can be understood by later application
software that is thereby insulated from details of the original input formats. The
messages use a “tag-value� format, in that an identifier describes the value that
follows; however, analogous to programming language record definitions, the ability
to use both recursion and user defined types in the definition of the message format
allows for almost infinite complexity in the messages themselves. Since ASN. 1
messages can thus become rather complex and are not intended to be human
readable, other report formats, such as GenBank™ flatfile format, are used to display
this data.

“asn.all” ASN. message definition 1

The particular format, or message definition, plays a central role. It is what describes
the syntax into which all the sequence record information must be parsed. The
original definition proposed by Jim Ostell [8] has been used with minor
modifications for over five years. It is available as the file, “asn.all” in the NCBI
toolkit distribution (ftp:ncbi.nlm.nih.gov; directory toolbox/ncbi_tools) and is
discussed in detail in the NCBI Programmers Toolkit documentation [8]. “asn.all”
describes the format of both the literature and genetic sequence messages. NCBI also
makes use of other ASN. 1 message definitions.

So that the data in the ASN.l messages can be used by software, C language
structures that map fairly closely to the “asn.all” definitions were designed, as well as
software (object loaders) that could read and write these messages from C language
structures to files and vice versa. These original structures and object loaders were
hand crafted. More recently, the program “asncode” was written by the author and

14

made available as part of the NCBI toolkit distribution. “asncode” takes ASN.l
message definitions and automatically generates both the C language structure
definitions and object loaders. This “asncode”-generated software is used in network
communication for the Entrez and Blast systems and the MMDB [9] structure
manipulating software and could be easily used by software developers for most
ASN.1 applications.

Sequence record types

In the “asn.all” definition, a “Bioseq” is a biological sequence that can contain
information in addition to the sequence. For the purposes of this discussion, a
Bioseq can be considered a collection of a “sequence” block, an “id” block, a
“history” block, a “descriptor” block, and an “annotation” block. Each Bioseq can
have a set of synonymous sequence identifiers that it contains in its “id” block. The
semantics of the definition in “asn.all” are that this set of sequence identifiers are
names for this Bioseq. Sequence identifiers that occur elsewhere in the record are
pointers to Bioseqs that contain those sequence identifiers in their “id” block.
“Descriptors” provide information that can apply to the entire sequence, such as
citations to the literature and taxonomic classifications for the source of the material
that led to the sequence information. Feature “annotation” applies to a particular
region of the sequence, such as a coding region. These feature annotations use a
sequence identifier to point to the Bioseq containing the sequence being described.

Bioseq sets

In the “asn.all” definition, a sequence entry can either be a Bioseq, or a more
complex set of Bioseqs. One example of a more complex set is the set of protein
Bioseqs combined with the nucleic acid that encodes them. The Bioseq can either
contain actual sequence, or can incorporate sequence information solely by reference
to other Bioseqs that actually contain the sequence. An example of this incorporation
by reference is in the set of Bioseqs comprising the exons of a gene. This is the most
common type of a “segmented set”. In this case, the set begins with a Bioseq that
points to the Bioseqs that contain the exon sequences. These pointers use sequence
identifiers to specify the order of the exons by referencing the name (sequence
identifier) of the Bioseqs containing the exon sequence. The Bioseqs containing the
actual raw sequences for the exons are, in this case, part of the Bioseq set that
includes the Bioseq pointing to them. Significantly, this “pointer” Bioseq, which has
no sequence of its own and only incorporates sequence by reference, can be
processed by the NCBI software system in the same way as any other Bioseq.

The entries in the Genomes division of Entrez are another example how pointers
incorporate sequence data by reference to other Bioseqs. However, they differ from
the sequence entry of the segmented set in that the Bioseqs containing the raw
sequence are not in the same entry. This makes it critical for the sequence identifiers
to be used accurately and uniquely.

15

There are other sets of data that can be grouped together. For example, sequences
of the same gene from a group of related organisms comprise a population set, such
as the actin sequences from related vertebrates. These and other more complicated
sets are just beginning to be used and will not be discussed further in this chapter.

Sequence Identifiers.

There are a variety of reasons why there are multiple sequence identifiers in the “id”
blocks of Bioseqs. For example, consider an expressed sequence tag (EST)
sequence. In its “native” database, dbEST[10], it is given an integral tag, an “est-id”
for its unique sequence identifier. If this sequence is to be used outside of the context
of this particular database, the string “dbEST” must be added to this integral
identifier for the resulting composite identifier to be unique. However, to appear
in GenBank™[11], the sequence record needs, additionally, both a LOCUS name and
an ACCESSION number. Every sequence in GenBank™ is also given a “gi” number,
which allows all sequences to be retrieved with a single integral key, by Entrez, for
example. Data from other sources also retain their identifiers assigned by those
sources. So this single sequence record will have four to six different sequence
identifiers. Different retrieval programs will use a different identifier from this
synonymous set.

‘gi’s Vs accessions

There has been some confusion about the role of the ‘gi’ and how it compliments an
ACCESSION. When a laboratory submits a sequence from a piece of DNA to a
database, an ACCESSION number is assigned and is permanently associated with
that piece of DNA. When the record containing that sequence is loaded into the ID
database (see below) an initial ‘gi’ is assigned to that sequence. Further experiments
over a time may alter the best understanding of the true sequence of that DNA.
When these new sequences for the same piece of DNA are submitted to NCBI, a new
‘gi’ is assigned. This leads to a “chain” or series of sequences and corresponding
‘gi’s for the same piece of DNA. When it is important to identify the piece of DNA,
for example as a subclone at a particular location within some other clone, then the
ACCESSION is best used. When the particular sequence is most important, for
statements about sequence similarity or some conceptual translation, the ‘gi’ that
points to the particular sequence intended is best used. Statements and experiments
that use ‘gi’s can always be repeated, because the sequence identified with a
particular ‘gi’ is always available, even if the particular sequence identified by that
‘gi’ is not thought, currently, to be the accurate sequence. This relationship between
ACCESSION and ‘gi’ is shown in Figure 2, below.

gi gi gi
100 citation change 100 sequence change 201

Figure 2: A “chain” of ‘gi’s

16

In this hypothetical example, the gi first assigned to this DNA sequence was gi=100. Although
the citation in the sequence record was subsequently changed, the gi number was not. Only
where the sequence information was altered was the gi changed to gi = 201. The number is
arbitrary and reflects that more than a hundred sequences or sequence changes had been
submitted in between the original submission of the gi=100 and the updated sequence (gi=201).

Not every sequence is given, currently, an ACCESSION number. In particular,
protein sequences derived from conceptual translations are not assigned
ACCESSIONS.

NCBI keeps a record of the history of ‘gi’s assigned to each sequence, even if that
sequence does not have an ACCESSION. This information is present in the ASN.l
so that older records point to newer records and vice versa, making it possible to
follow a trail of sequence changes for a particular piece of DNA (see below).

Integrating Database (ID)

As they are loaded into the ID database, which was designed and developed by the
author, ASN. 1 messages undergo uniform processing. This processing includes the
assigning and tracking of ‘gi’ identifiers. All records for the GenBank™ updates and
releases pass through ID.

During loading of a message into ID, the older record in the same chain is
compared. Generally, since the messages are a complex set of Bioseqs, there will be
an ACCESSION number, or related sequence identifier, in at least one of the
Bioseqs, that can be used to find the older record. Sequences from Bioseqs that can
be matched because they use identical sequence identifiers are compared. If the type
of sequence changes (e.g., DNA to RNA) or the sequence itself changes, a new ‘gi’ is
assigned, and the history record is added, both in the ID and in the ASN.l message
itself. If the ‘gi’ does not change, for example with a citation change, any history
from the older record is copied into the incoming record to preserve the integrity of
the ‘gi’ trail in the ASN. 1 message.

Proteins from conceptual translations pose a special problem for this assignment
and tracking, because of the present lack of ACCESSION numbers on protein
Bioseqs. These protein Bioseqs are mostly part of the complex set of Bioseqs that
includes the nucleic acid that encodes them. Five rules are applied in an attempt to
match these protein Bioseqs between those in the current incoming record and those
in the existing record. The first rule that is satisfied is used to declare a match.
These rules are necessary because the incoming records only sometimes contain
sequence identifiers on the protein Bioseqs that can be used to match Bioseqs
between the old and the new record. Once matched, the sequences are compared in
the same way as for the nucleic acid Bioseqs matched via accession for the purpose
of ‘gi’ assignment. These rules are:

1. Explicit declaration by sequence identifier. For example, the ‘gi’ is sometimes
in the ASN. 1 message itself.

17

2. Explicit declaration by the history in the incoming record. Since NCBI accepts
ASN.l messages directly, the history slot can be used to explicitly declare the
relationship between protein Bioseqs. Of course, these are only allowed if the
nucleic acid Bioseqs of the complex sets containing the proteins are also properly
related. Here, too, a ‘gi’ identifier or its equivalent can be used.

3. Matching by exact sequence identity. This actually happens quite frequently.

4. Matching by exact identity of location on the nucleic acid Bioseq. This can
happen without sequence identity because of a prior error in translation, for example,
caused by using an incorrect genetic code.

Figure 3: Deducing chains for protein ‘gi‘s

Figure 3: Proteins (curly lines) Bioseqs in the new records (on the left) and old records (on the
right) are ordered by their position on the nucleic acid (solid vertical lines). Proteins matched by
one of the above rules are indicated by solid lines, while proteins matched by rule 5 (see the main
text) are indicated by lighted dotted lines. A protein that can not be matched is indicated by the
absence of lines and a question mark.

5. Matching by position in the set of records (Figure 3). Generally, the rule is if
that a protein is bounded by either matched proteins or the end of the DNA sequence,
it is assumed to be in the same chain (be encoded by the same gene). It is realized
that this algorithm will occasionally make mistakes. However, it is usually correct
and the trail of ‘gi’s can be very useful.

Conversion to ‘gi’ Sequence Identifiers

During loading into the ID database, sequence identifiers used as pointers to Bioseqs
are converted to ‘gi’ type sequence identifiers. This allows any subpiece of the
ASN.l message to be used as an independent object by later software, even if
separate from its original Bioseq.

A consequence of this conversion of all other pointer sequence identifiers to ‘gi’
identifiers is that if a record points to a sequence identifier not yet known to ID, the
sequence identifier can not be converted. When such “sought” (currently unknown)
identifiers are defined by having their sequence loaded into ID, the original record is
altered to point to it. This provides some independence from the order of addition of
data to ID and guarantees that all the sequence identifiers that can be converted to
‘gi’ identifiers have been converted, but with computational cost and increased
complexity in the processing code.

18

Frequently, the information in one record “takes over” the information in others.
For example, an author submits a new large sequence record that incorporates
information from other smaller records. When desired, this new record receives its
own new ACCESSION. In the current ID database and in the ASN.l message, no
distinction is made between this takeover and simply a new sequence for the same
piece of DNA.

Scale-up for the Expected Flood of Genome Project Data

The ID database has fulfilled its role since early 1993. However, to allow scale-up
and massive throughput, ID has recently been redesigned and a new system is under
development. This system will distribute many of the tasks and storage that are
presently centralized and instead will keep only limited information centrally.
Specifically, a number of “satellite” databases, internal to NCBI, will hold the data
themselves and will communicate with the main ID database, to be called IdMain, to
receive ‘gi’ identifiers and to inform IdMain of the multiple sequence identifiers that
map to this ‘gi’. Communication is planned to be either synchronous through a direct
connection, or asynchronous, using the Sybase Replication Server [12]. Because of
the less tight coupling between the data and IdMain than is in the current ID, every
Bioseq needs a primary sequence identifier to serve the same role as an ACCESSION
and thus stays the same across different submissions of the same Bioseq.

The plan is to have access to the ASN.l messages through a Sybase Open Server
[12], which will be able to access information from IdMain to find which satellite
database has the information needed to generate the ASN. 1 message, or the ASN. 1
message itself. This has already been implemented (Eugene Yaschenko, personal
communication), using the original ID database as the data source. When the new
distributed system is ready, there will be no changes to Entrez, or other applications
retrieving data this way, just upgrades to the Sybase Open Server.

This will allow, for example, dbEST to hold and deliver EST sequences, without
them having to be loaded into an additional database. Not only does this save
computational resources and space, but it allows the greatest possible advantage to be
made of the relational nature of dbEST itself. Furthermore, by allowing for increased
volume by the addition of multiple satellite databases that hold ASN.l messages and
are either relational or non-relational, scale-up should be efficient.

Acknowledgments

The authors wishes to thank to Jo McEntyre for helpful comments on the
manuscript.

References

1. G. Salton, “Automatic Text Processing,” Addison-Wesley, Reading,
Massachusetts. 1989.

19

2. W. J. Wilbur, A retrieval system based on automatic relevance weighting of
search teams, Proceedings of the 55th American Society of Information
Science, Annual meeting (Ed.) D. Sahr (1992(, Pittsburg, PA. 29,216-220.
W. J. Wilbur and Y. Yang, An analysis of statistical term strength and it use
in the indexing and retrieval of molecular biology texts, Computers and
Biology in Medicine, 26, 209-222.

4. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local
alignment search tool, Journal of Molecular Biology, 215, 403-410 (1990).

5. J. F. Gibrat, T. Madej, S. H. Bryant, Surprising similarities in structure
comparison, Current Opinion in Structural Biology, 6, 377-385 (1996).

6. Improving GenBank’s Taxonomy, NCBI News February, 1994.
7. M. T. Rose, “The Open Book: A Practical Perspective on OSI”, Prentise Hall,

Englewood Cliffs, New Jersey, 1990.
8. NCBI Software Toolkit Manual (1993) National Center of Biotechnology

Information, Bldg. 38A, NIH, 8600 Rockville Pike, Bethesda MD 20894.
9. T. Madej, J.-F. Gibrat, and S. H. Bryant, Threading a database of protein

cores, Proteins, 23,356-369 (1995)
10. M. S. Boguski, T. M. Lowe, and C. M. Tolstoshev, dbEST - database for

‘expressed sequence tags, Nature Genetics 4, 332-333 (1993)
11. D. A. Benson, M. S. Boguski, D. J. Lipman, and J. Ostell, GenBank, Nucleic

Acids Research, 25, 1-6 (1997)
12. For information on Sybase products, see their web pages,

Http://svbooks.sybase.com/cgi-bidnph-dvnaweb

3.

This page intentionally left blank.

2 HOVERGEN: COMPARATIVE
ANALYSIS OF HOMOLOGOUS

VERTEBRATE GENES

Laurent Duret, Guy Perrière and Manolo Gouy

Laboratoire de Biométrie, Génétique et Biologie des
Populations, UMR CNRS 5558, Université Claude Bernard,

43 Bd du 11 Novembre 1918, 69622 Villeurbanne cedex,
France

Introduction

Comparison of homologous sequences is an essential step for many studies related to
molecular biology and evolution: to predict the function of a new gene, to identify
important regions in genomic sequences, to study evolution at the molecular level or
to determine the phylogeny of species. The importance of comparative sequence
analysis (comparative genomics) for deciphering the genetic information embedded
in the human genome is now widely recognized, and thus, projects have been set up
to sequence large genomic regions of model vertebrate organisms such as mouse [1]
or pufferfish [2].

Databases already contain a considerable amount of vertebrate data suitable for
comparative analysis. For example, more than 1,200 homologous genes between man
and rodents are available in databases [3]. Besides mammals, large sets of sequence
data are also available for birds (chicken), amphibians (xenopus) and bony fishes
(zebrafish, pufferfish, salmonidae), thus covering a wide range of evolutionary
distances, from 80 to 450 million years of divergence.

Thanks to this large and rapidly increasing amount of homologous sequences,
comparative sequence analysis should be very efficient for improving our knowledge
of the structure, function and evolution of vertebrate genomes. However, the search
for homologous genes and interpretation of homology relationships are complex
tasks that require to simultaneously handle multiple alignments, phylogenetic trees,
taxonomic data and sequence-related information. Genomic sequence databases such
as GenBank [4] or EMBL [5] do not include information relative to homology
relationships between genes, and hence these analyses have to be done manually,
which is very tedious and error prone.

22

To respond to these problems, we have developed a database of homologous
vertebrate genes named HOVERGEN [6]. This database integrates protein multiple
alignments, phylogenetic trees, taxonomic data, nucleic and protein sequences, and
GenBank sequence annotations. With its graphical interface, HOVERGEN allows
one to rapidly and easily select sets of homologous genes and evaluate homology
relationships between sequences. This chapter describes the content of this database,
the procedure we use to maintain it, a few examples of application and the future
developments that we plan.

Definitions: homology, orthology, paralogy

Two sequences are said to be homologous if, and only if, they share a common
ancestor [7]. In practice, homology is generally inferred from sequence similarity.
Sequence similarity is not always a proof of homology: when the similarity is low,
covering a short region, it is possible that it is due to structural or functional
convergence or simply to chance [8]. In some cases, sequence similarity is only due
to compositional biases (low complexity segments, such as proline- or alanine-rich
regions) [9]. In the absence of compositional bias, when protein sequence similarity
is at least 30% identity over 100 residues or more, it is almost certain that sequences
share a common ancestor [10]. This definition of homolbgy also explains why
statements such as “these two proteins are 35% homologous” are incorrect although
they are very frequently used: homology is an all or none property which can only be
true or false.

In some cases, sequences are not homologous over their entire length: some
proteins are constituted of modules (or domains) that have different evolutionary
origins [11,12] These proteins are said to be mosaic (or modular).

Among sequences that are homologous over their entire length, one has to
distinguish orthologous sequences, i. e. sequences that have diverged after a
speciation event, from paralogous sequences, i.e. sequences that have diverged after
duplication of an ancestral gene (Figure 1) [7]. This distinction is essential for
molecular phylogeny since it is necessary to work with orthologous genes to infer
species phylogeny from genes phylogeny. This distinction is also important to predict
the function of a new gene or to search for functionally conserved regions by
comparative analysis, because paralogous genes, even if closely related, may have
different functions or regulations.

23

Figure 1: Phylogenetic tree of the BMP gene family illustrating paralogy and
orthology concepts. BMP2 sequences from rat, mouse, man, chicken and xenopus
are orthologous since they all diverged after speciation events. BMP2 and BMP4
genes are paralogous since they result from a gene duplication. As often, the gene
nomenclature using 2A/2B for human genes and 2/4 for others does not clearly
reflect the evolutionary history of these genes.

The distinction between orthologous and paralogous genes requires a careful
analysis of homologous sequences [6]. First of all, it is not possible to rely on
database definitions to identify orthologous genes, because many sequences are not
annotated, and when annotations are present they are sometimes inexplicit or
inaccurate. Thus, some paralogous genes may have very similar definitions, whereas
orthologous genes may be given totally different names. Hence, it is necessary to use
sequence similarity criteria to search for homologous genes.

Similarity search programs such as BLAST [13] or FASTA [14] allow one to
quickly search for homologues in sequence databases. However, pairwise sequence
comparisons are not sufficient to distinguish orthologous from paralogous genes. For
example, suppose that one compares human bone morphogenetic protein-2B
(BMP2B, GenBank accession number M22490) to mouse bone morphogenetic
protein 2 (Bmp2, L25602). These two sequences are highly similar, they have similar
definitions, and thus they might be considered as orthologous. However, the
phylogenetic tree of all available BMP2B homologues clearly shows that mouse
Bmp2 sequence is much more closely related to xenopus or chicken Bmp2 genes than
to human BMP2B (Figure 1). Since mouse is much more closely related to man than
to birds or amphibians, it is likely the BMP2B and Bmp2 genes are paralogous.
Indeed, the phylogenetic tree shows that human BMP2B gene is orthologous to
mouse Bmp4, and that mouse Bmp2 gene is orthologous to human BMP2A. It is
important to notice that in the above example, in the absence of the other BMP genes
from different species it would not have been possible to detect paralogy.

This example shows that it is necessary to compare all available homologous
sequences to be able to detect paralogy. Thus, as far as genomes will not have been
completely sequenced, it will not be possible to definitively demonstrate orthology

24

between sequences. Rather, orthology relationships have to be re-analyzed each time
a new gene is sequenced.

HOVERGEN: scope and content

HOVERGEN is a database dedicated to evolutionary or comparative studies. Its main
goal is to allow one to quickly retrieve sets of orthologous genes (or proteins) among
vertebrate species.

HOVERGEN contains all vertebrate sequences (genomic or RNA) available in
GenBank (along with the corresponding annotations), except EST sequences. We
decided in 1995 to exclude ESTs from HOVERGEN because most of them are
partial, contain sequencing errors, are not annotated, and thus are of little value for
our purpose. Initially, HOVERGEN contained only sequences from the nuclear
genome [6], but now mitochondrial sequences are also included. Protein-coding
sequences (CDS) can be automatically translated according to sequence annotations.
Thus, HOVERGEN can be used both as a nucleic acid or a protein-sequence
database.

The main information that is included in HOVERGEN is the entire classification
of all protein-coding sequences into gene families:

Coding-sequences are all compared between each others (at the protein level).

Sequences that are homologous over their entire length are classified into
families.

Protein multiple alignments are computed for each family.

Genes phylogenetic trees are derived from protein multiple alignments.

Furthermore, we also include in HOVERGEN information relative to genes
structure that is not provided by GenBank, such as a precise description of non-
coding sequences, location of CpG islands, and indication of GC-content (see [6]).
Finally, to limit the problem of redundancy in sequence databases, protein-coding
sequences (CDS) are all compared between each others to identify multiple
sequences of a same gene.

The HOVERGEN database is not intended to study the modular evolution of
proteins. Thus homology relationships between module or domains are not described
in HOVERGEN.

Treatment of data

Identification of redundancy

It is common to find in DNA databases several entries that correspond to a same
gene. For example, one entry may describe the mRNA and another the genomic

25

fragment. In some cases, a same gene has been independently sequenced by different
groups, or has been sequenced several time from different individuals to study
polymorphism. In principle, one should find in databases only one entry for each
gene, and if it is polymorphic, then allelic variations should be described in the
annotations. But in practice, all redundant sequences are entered in databases, and
there is no merging of partial overlapping sequences.

This redundancy is very problematic, not only because it gives a confuse view of
the status of these redundant sequences (are they identical? splicing or allelic variant
of a same gene? paralogous genes?), but also because it can considerably bias the
results of statistical analyses.

In HOVERGEN, we systematically compare all CDSs between each other (with
BLASTN [13]) to try to identify those that correspond to a same gene. As previously
discussed [6], the problem with that approach is that two redundant CDSs may show
some differences due to polymorphism, sequencing errors, or annotation errors.
Taking into account published estimates of sequence polymorphism [15], and
sequencing error rates [16-18], we decided to consider as redundant all CDS that
share more than 99% identity (at the DNA level), and have less than 3 bases of
difference in length. Using these criteria, we detected 21% of redundancy among the
63,520 vertebrate CDSs available in GenBank (release 101, June 1997). This level of
redundancy is remarkably high, and it is thus necessary to take it into account when
doing statistical analyses on sequence databases.

Redundancy is not eliminated from HOVERGEN because each entry may be
associated to useful information. Rather, redundancy is explicitly declared, using a
new qualifier ('redundanc y_ref') that is included in sequence annotations. This
qualifier is unique for each set of redundant CDSs. Thus, this information can easily
be used to eliminate redundancy when required.

It is important to note that two homologous genes resulting from a recent
duplication, speciation or conversion may be more than 99% identical (e.g. human
1 and a-2 globin genes). Thus, declaration of redundancy in HOVERGEN should not
be taken into account when one wants to study recent evolutionary events 4 (<
million years) [6].

Classification of sequences into families of homologous genes

Sequence selection and similarity search. All available CDSs are classified, except
partial CDSs shorter than 300 nt (about 25% of all CDSs). When several redundant
CDS are available, only one is analyzed for the classification. CDSs are translated
into proteins and compared between each others with BLASTP [13], using the PAM
120 score matrix. The threshold score to report similarity (S parameter in BLASTP)
is set according to proteins length (L): S=150 for L 170 aa, S=L-20 for L<170 and
S=35 for L<55 aa. This threshold is high enough to avoid excessive noise due to low
complexity segments present in many proteins. It is low enough to detect relatively
distant similarities 30% identity over 150 aa or more). It should be noted that, as

26

already discussed, this search is not intended to detect distant similarities between
short protein modules.

Classification. The aim of the classification is to group together all sequences that
are homologous over their entire length, without making distinction between
orthologous and paralogous genes. However, when gene families are very large (e.g.
there are more than 250 vertebrate globin-related sequences in HOVERGEN),
computing of multiple alignments and graphical display of phylogenetic trees become
very problematic. Thus, in such cases, clearly paralogous genes (e.g. and ß globin
genes) are classified into distinct subfamilies.

The classification is done in two steps. A first programs groups all proteins
sharing similarities. Note that at this step, if A is similar to B, and B to C, then A, B
and C are grouped together, even if A and C share no similarity. Then, within each
group, sequences are sorted according to similarity criteria with a program based on
the UFGMA algorithm [19]. The distance metrics used for this process derives from
the Poisson probability computed by BLASTP. Once groups are sorted, a manual
expertise is required to split these groups into families of sequences homologous over
their entire length.

Currently, 39,797 non-redundant CDSs are classified into 5,54 1 families
(HOVERGEN release 25, July 1997). Among those CDSs, 2,232 (6%) have no
homologue in their family. Figure 2 gives the distribution of families according to the
number of sequences they contain (redundancy excluded).

Among the largest gene families, one essentially finds genes involved in the
immune system, that are heavily studied for their polymorphism (Table 1). Most of
families that are represented in a large number of different species correspond to
mitochondrial genes, that are often used for phylogenetic studies (Table 2).

Number of sequences

27

Figure 2: Distribution of families according to the number of sequences they contain
(without redundancy) [HOVERGEN release 25, July 1997].

Protein multiple alignment and phylogenetic trees

Protein multiple alignments are computed with CLUSTALV [20] for each gene
family, except those that contain more than 150 sequences (Table 1). When several
redundant CDSs are available, only one is included in the alignment. Phylogenetic
trees are inferred from multiple alignments using the 'neighbor joining' method [21].

Updating of data and rate of growth

HOVERGEN is updated every two GenBank releases (every four months). New or
modified sequences from GenBank are compared to HOVERGEN sequences and
between each others, first at the DNA level to identify redundancy, and then at the
protein level to update the classification. Multiple alignments and phylogenetic trees

28

are computed for all families that have been modified or newly created. The rate of
growth of the database (total amount of sequences) is exponential-like, with a
doubling time of less than two years, but the number of gene families evolves rather
linearly with time (Figure 3).

Figure 3: Evolution of the size of the HOVERGEN database

Database query software

Sequence retrieval

Sequences and annotations are managed using the ACNUC system [22]. This system
is associated with a graphical retrieval software QUERY_WIN, that allows the user
to build complex queries using multiple criteria [23]. Notably, thanks to the
information that we include in HOVERGEN, it is possible to quickly select all
homologous sequences available in a given set of species.

Graphical interface for multiple alignments and phylogenetic trees

We have developed a graphical interface that allows one to simultaneously handle all
the data available in HOVERGEN to analyze homology relationships: phylogenetic
trees, multiple alignments, taxonomic information and sequence annotations (Figure
4). The core of the interface is a phylogenetic tree viewer. Genes are colored
according to the species from which they have been sequenced. The color that are
affected to each taxa are either automatically set for different taxonomic level, or can
be manually chosen by the user. When the user clicks on a gene in the tree, the
sequence definition is displayed in another window. If there are several redundant
sequences for that gene, all definitions are shown. Then, by clicking on a definition

29

the user can visualize all the annotations associated to these sequences. Similarly, one
can select from the tree the genes to be displayed in the multiple alignment.
Alignments between selected genes are not computed ab initio, but reconstructed
from the whole family multiple alignment (which is almost instantaneous).

WWW server

We have developed a WWW interface that allows one to query HOVERGEN and to
download multiple alignments and phylogenetic trees through INTERNET
(http://acnuc.univ-lyonl.fr/start.html) [24]. We also provide dedicated helper
applications to directly visualize alignments and phylogenetic trees from the Web
browser application. Although this server does not provide all the facilities of the
graphical interface, it is useful for those who cannot install HOVERGEN on their
local computer.

30

Figure 4: HOVERGEN graphical interface. When the user clicks on a gene in the
tree (1), definitions of all corresponding sequences are displayed (2). By clicking on
a definition, the user can visualize the annotations associated to the sequence (3). The
same window is used to display protein alignments (4). Sequence divergence and
indel frequency are indicated (5). Window (6) indicates the colors corresponding to
the different taxa.

31

Selecting orthologous genes with HOVERGEN

As explained in the introduction, the search for orthologous genes is a complex task
that requires a careful analyses of all available data. With HOVERGEN, this search
can be done in two steps. The first step consists in using the QUERY_WIN sequence
retrieval software to search for homologous genes known in different species,
according to the criteria defined by the user. Then, the user has to examine with the
graphical interface all the gene families to which these genes belong to distinguish
orthologous from paralogous genes.

32

Examples of application

HOVERGEN has been used in various studies based on statistical analysis of
orthologous genes, to study the evolutionary rate of genes [3,25,26], the structure of
vertebrate genomes [27-29] or the statistics of genes size [30,31]. In molecular
phylogeny, it is important to work on large samples of genes, and it is absolutely
necessary to exclude paralogues from the analyses to be able to resolve phylogenetic
trees of species. Thanks to the amount of data available in HOVERGEN it has been
possible to address several important questions on vertebrates phylogeny, and some
unexpected results regarding mammals or birds phylogeny have come out [32-34].

HOVERGEN is also useful as a tool to display a global view of all data available
for a given gene family. Thanks to the graphical interface, the user can quickly access
to the annotations of the various redundant sequences of a gene, or of the
homologues of that gene in the same genome or in other species. Thus, HOVERGEN
allows one to enrich the knowledge on a given gene by the information available for
its various homologues.

Finally, HOVERGEN is also a powerful tool for correcting annotation errors.
Newly sequenced genes are now often annotated simply by similarity with an already
known sequence. Unfortunately, many errors occur because paralogous genes are not
distinguished from orthologous genes. Such errors can easily be checked by looking
at the phylogenetic trees provided by HOVERGEN.

Comparison with other databases

Several other databases include information on homology relationships between
sequences. For example, ENTREZ [35] shows all significant similarities detected
between protein or DNA sequences. However, ENTREZ does not provide multiple
alignments nor phylogenetic trees. The PIR database now provides an entire
classification of all published protein sequences, along with multiple alignments [36].
However, contrarily to HOVERGEN, PIR is limited to proteins, and does not give
access to the gene sequences. Currently, HOVERGEN is the only database that
provides an entire classification of vertebrate genes, with both multiple alignment and
phylogenetic trees. Its main originality comes from its query retrieval system that
allows one to quickly retrieve sets of homologous genes from different species and its
graphical interface that allows one to analyze their evolutionary relationships.

Limitations

Several limitations of our database have to be mentioned. First of all, the graphical
display of phylogenetic trees is limited to families having less than 150 sequences.
Currently, only 10 families contain more than 150 sequences (Table 1), but this
number should rapidly increase. Due to this problem of displaying large trees, we
sometimes split paralogous genes from a same families into different subfamilies.

33

Thus, HOVERGEN allows one to do exhaustive searches of orthologous genes, but
not of paralogous genes.

It should be noted that alignments provided by HOVERGEN are crude results
from CLUSTALV, without any manual correction. Moreover, when calculating
phylogenetic trees, one should exclude ambiguous parts of the alignment, which
cannot be done in our automatic procedure. We also have noted some problems in
phylogenetic trees (such as negative branches) that are due to the fact that we include
partial sequences in our classification. Thus, although trees provided by
HOVERGEN are very useful for analyzing evolutionary relationships, one should not
take them as exact phylogenetic trees.

Perspectives

Up to now, HOVERGEN was limited to vertebrates, but we plan to extend this
database to all organisms. The classification will be exhaustive, so that it will be
possible to systematically analyze not only orthologues but also paralogues. This new
database will be based both on GenBank/EMBL (for DNA sequences), and on
SWISSPROT-TREMBL [37] to have access to high quality annotations for protein
sequences. The graphical interface of this system is being written in Java, so that it
will be possible to use it from any computer system for which the Java Virtual
Machine is available. Also, as the Java libraries include tools allowing simple
INTERNET connections and client/server interactions, it will be possible to query
this database either locally or remotely.

Availability

HOVERGEN is available by anonymous FTP from our server (ftp://biom3.univ-
lyon1.fr/pub/hovergen/) or from the NCBI
(ftp://ncbi.nlm.nih.gov/repository/hovergen/). The QUERY_WIN program and
HOVERGEN graphical interface are available for UNIX platforms (Sun, SGI, DEC-
Alpha, IBM-RS/6000). HOVERGEN can be used through the Web at:
http://acnuc.univ-lyonl.fr/start.html/. It is also possible to ask for an account at the
UK MRC HGMP Resource Centre (http://www.hgmp.mrc.ac.uk/) or at the French
INFOBIOGEN server (http://www.infobiogen.fr/) to use HOVERGEN remotely with
a X-window emulating software.

Acknowledgments

This work is supported by the French Centre National de la Recherche
Scientifique (CNRS).

34

References

1. Hood, L., Koop, B., Goverman, J. Hunkapiller, T. Model genomes: the benefits
of analysing homologous human and mouse sequences, Trends Biotechnol.,

Brenner, S., Elgar, G., Sandford, R., MacRae, A., Venkatesh, B. Aparicio, S.
Characterization of the pufferfish (Fugu) genome as a compact model
vertebrate genome, Nature, 1993, 366, pp.265-268.
Makalowski, W., Zhang, J.H. Boguski, M.S. Comparative analysis of 1196
orthologous mouse and human fill-length mrna and protein sequences, Genome
Res., 1996, 6, pp.846-857.

4. Benson, D.A., Boguski, M.S., Lipman, D.J. Ostell, J. GenBank, Nucleic Acids
Res., 1997, 25, pp.1-6.

5. Stoesser, G., Sterk, P., Tuli, M.A., Stoehr, P.J. Cameron, G.N. The EMBL
Nucleotide Sequence Database, Nucleic Acids Res., 1997, 25, pp.7-13.

6. Duret, L., Mouchiroud, D. Gouy, M. HOVERGEN: a database of homologous
vertebrate genes, Nucleic Acids Res., 1994, 22, pp.2360-2365.

7. Fitch, W.M. Distinguishing homologous from analogous proteins, Syst. Zool.,

8. Doolittle, R.F. Convergent evolution: the need to be explicit, Trends Biochem.
Sci., 1994, 19, pp.15-18.

9. Wootton, J.C. Federhen, S. Statistics of local complexity in amino acid
sequences and sequence databases, Computers Chem., 1993, 17, pp. 149-163.

10. Doolittle, R.F. Searching through sequence databases, Methods Enzymol.,

11. Patthy, L. Modular exchange principles in proteins, Curr. Opin. Struct. Biol.,

12. Patthy, L. Introns and exons, Curr. Opin. Struct. Biol., 1994, 4, pp.383-392.
13. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. Lipman, D.J. Basic local

14. Pearson, W.R. Lipman, D.J. Improved tools for biological sequence

15. Li, W.H. Sadler, A. Low nucleotide diversity in man, Genetics, 1991, 129,

16. Krawetz, S.A. Sequence errors in GenBank: a means to determine the accuracy
of DNA sequence interpretation, Nucleic Acids Res., 1989, 17, pp.3951-3957.

17. Kristensen, T., Lopez, R. Prydz, H. An estimate of the sequencing error
frequency in the DNA sequence databases, DNA Seq., 1992, 2, pp.343-346.

18. Lamperti, E.D., Kittelberger, J.M., Smith, T.F. Villa-Komaroff, L. Corruption of
genomic databases with anomalous sequence, Nucleic Acids Res., 1992, 20,

19. Sokal, R.R. Michener, C.D. A statistical method for evaluating systematic

20. Higgins, D.G., Bleasby, A.J. Fuchs, R. CLUSTAL V: imp roved software for

1992, 10, pp.19-22.
2.

3.

1970, 19, pp.99-113.

1990, 183, pp.99-110.

1991,1, pp.351-361.

alignment search tool, J. Mol. Biol., 1990, 215, pp.403-410.

comparison, Proc. Natl. Acad. Sci. USA, 1988, 85, pp.2444-2448.

pp.513-523.

pp.2741-2747.

relationships, Univ. Kansas Sci. Bull., 1958, 28, pp.1409-1438.

multiple sequence alignment, Comp. Appl. Biosci., 1992, 8, pp.189-191.

35

21. Saitou, N. Nei, M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees, Mol Biol Evol, 1987, 4, pp.406-425.

22. Gouy, M., Gautier, C., Attimonelli, M., Lanave, C. Di-Paola, G. ACNUC- a
portable retrieval system for nucleic acid sequence databases: logical and
physical designs and usage, Comp. Appl. Biosci., 1985, 1, pp.167-172.

23. Perriere, G., Gouy, M. Gojobori, T. NRSub: a non-redundant data base for the
Bacillus subtilis genome, Nucleic Acids Res., 1994, 22, pp.5525-5529.

24. Perriere, G. Gouy, M. WWW-Query: An on-line retrieval system for biological
sequence banks, Biochimie, 1996, 78, pp.364-369.

25. Mouchiroud, D., Gautier, C. Bernardi, G. Frequencies of synonymous
substitution in mammals are gene-specific and correlated with frequencies of
non-synonymous substitutions, J. Mol. Evol., 1995, 40, pp.107-113.

26. Hughes, A.L. Yeager, M. Comparative evolutionary rates of introns and exons
in murine rodents, J. Mol. Evol., 1997, 45, pp.125-130.

27. Caccio, S., Zoubak, S., D'Onofrio, G. Bernardi, G. Nonrandom frequency
patterns of synonymous substitutions in homologous mammalian genes, J. Mol.

28. Bernardi, G., Hughes, S. Mouchiroud, D. The major compositional transitions in
the vertebrate genome, J. Mol. Evol., 1997, 44, pp.S44-S5 1.

29. Robinson, M., Gautier, C. Mouchiroud, D. Evolution of isochores in rodents,
Mol. Biol. Evol., 1997, 14, pp.823-828.

30. Duret, L., Mouchiroud, D. Gautier, C. Statistical analysis of vertebrate
sequences reveals that long genes are scarce in GC-rich isochores, J. Mol.

31. Ogata, H., Fujibuchi, W. Kanehisa, M. The size differences among mammalian
introns are due to the accumulation of small deletions, FEBS Lett., 1996, 390,

32. Graur, D., Duret, L. Gouy, M. Phylogenetic position of the order Lagomorpha
(rabbits, hares and allies), Nature, 1996, 379, pp.333-335.

33. Graur, D., Gouy, M. Duret, L. Evolutionary affinities of the order
Perissodactyla and the phylogenetic status of the superordinal taxa Ungulata
and Altungulata, Mol. Phylogenet. Evol., 1997, 7, pp. 195-200.

34. Hedges, S.B., Parker, P.H., Sibley, C.G. Kumar, S. Continental breakup and the
ordinal diversification of birds and mammals, Nature, 1996, 381, pp.226-229.

35. Schuler, G.D., Epstein, J.A., Ohkawa, H. Kans, J.A. Entrez: molecular biology
database and retrieval system, Methods Enzymol., 1996, 266, pp.141-162.

36. Mewes, H.W., Albermann, K., Heumann, K., Liebl, S. Pfeiffer, F. MIPS: A
database for protein sequences, homology data and yeast genome information,
Nucleic Acids Res., 1997, 25, pp.28-30.

37. Bairoch, A. Apweiler, R. The SWISS-PROT protein sequence data bank and its
supplement TrEMBL, Nucleic Acids Res., 1997, 25, pp.3 1-36.

Evol., 1995, 40, pp.280-292.

Evol., 1995, 40, pp.308-317.

pp.99-103.

This page intentionally left blank.

3 WIT/WIT2: METABOLIC

RECONSTRUCTION SYSTEMS

Ross Overbeek, Niels Larsen, Natalia
Maltsev, Gordon D. Pusch, and Evgeni Selkov

Argonne National Laboratory, Argonne, IL 60439

Introduction: What Is Metabolic Reconstruction?

For the past few years, we have been developing metabolic reconstructions for
organisms that have been sequenced, and we have made a number of these working
models available. By the term metabolic reconstruction we mean the process of
inferring the metabolism of an organism from its genetic sequence data supplemented
by known biochemical and phenotypic data. Our initial software system to support
metabolic reconstruction was called WIT (for “What Is There?”) and has been in use
since mid-1995 (http://www.cme.msu.edu/ WIT/) [7]. Recently, a second system,
which we have called WIT2, has been made available
(http://www/mcs.anl.gov/home/overbeek/WIT2/CGI/ user.cgi). In this chapter we
discuss the central design issues in constructing such systems, along with the basic
steps that must be supported by any such system.

Representation of Metabolism

The most basic decisions center on how to represent the metabolism of an organism.
Clearly, a topic of such complexity might well warrant an extremely abstruse
computational representation. Indeed, the efforts that have been spent in representing
chemical compounds give some indication of the potential magnitude of the problem.

In considering this problem, we have found it useful to draw an analogy to the
representation of an automobile as it appears in any auto parts store. In this context,
the auto overview and parts catalog give an accurate, high-level abstraction that does
not include any real discussion of the “intermediates”. It is an effective
representation, but it does not convey the details of how energy is generated and

38

distributed, how control mechanisms function, or how dynamic behavior is
constrained.

We have developed an approach for representing the metabolism of an organism
that is based on similar simplifications:

We begin with a set of metabolic pathway diagrams. For our purposes, these
diagrams are an arbitrarily structured and complex representation of a functional
subsystem. Hence, we call them function diagrams. Just as an abstract drawing
in an auto parts catalog attempts to convey the essential relationship of a set of
functionally related parts, the function diagrams that we use attempt to convey
the functional grouping of a set of proteins (normally, the set of enzymes that
catalyze the reactions depicted in a metabolic pathway).

Function diagrams themselves can (and should be) a well-structured
representation of the functional interactions of proteins. This will be critical to
support systems that base computations on the details of the interactions. For the
purpose of metabolic reconstruction, however, none of this is necessary. A
minimal function diagram composed simply of a list of protein identifiers would
work just as well (i.e., we could use a set of minimal function diagrams in which
each diagram was nothing but a list of enzymes along with any additional
noncatalytic proteins).

The central issue in this highly simplified framework now becomes how to
assign unique identifiers to the functional roles in the diagrams. For function
diagrams describing metabolic pathways, the enzyme number is usually
adequate. However, some enzyme numbers are imprecise (i.e., they describe a
class of enzymes), and there is the issue of what identifier to use for noncatalytic
functional roles. As a (not completely adequate) solution, we use a slightly
distilled version of the Swiss Protein Data Bank descriptions. (The people
maintaining the Swiss Protein Data Bank have been making heroic efforts to
standardize descriptions of protein functional roles, and whenever possible we
simply exploit their efforts.)

The initial set of function diagrams that we now include in WIT/WIT2 comes
from the Metabolic PathwayDdatabase built by Evgeni Selkov [8]. It now contains
well over 2500 pathways and variants of pathways. These have been supplemented
by a much smaller set of additional function diagrams from other sources.

Another way to summarize our representation of functional groupings is to say
that we begin with two relational tables: (1) the diagram-role table, which contains
two columns: the diagram identifier and the functional role identifier; and (2) the
protein-role table, which also contains two columns: the protein sequence identifier
and the functional role identifier.

Swiss Protein Data Bank entries are one class of protein sequences, and for them
the “protein sequence identifier” is just the accession number. When other classes of

39

protein sequence are used (e.g., ORFs from a newly sequenced genome), appropriate
identifiers are used.

A metabolic reconstruction for a genome amounts to the entries in the protein--
role table corresponding to ORFs from the genome, and a third table, the asserted-
diagrams table, which is a list of the diagrams that have been asserted for the
genome.

We stress that our approach of using arbitrary function diagrams and treating them
as no more than collections of functional roles is a critical simplification. Such a
simplification makes it possible to proceed with our goal of creating metabolic
reconstructions without facing the detailed issues required to make inferences about
the metabolic network. At the same time, if the actual function diagrams are a well-
structured representation of the functions, such inferences will become commonplace
(and useful in supporting the derivation and analysis of metabolic reconstructions).

How Is Metabolic Reconstruction Done?

Once the ORFs for a newly sequenced genome have been determined [1,2], we must
carry out four steps: (1) assign functional roles, (2) assert the functional diagrams, (3)
determine missing functions, and (4) balance the model.

Initial Assignments of Function

Our first step is to make initial assignments of their functional roles. This is done in
two substeps: first, assignments are automatically generated for cases in which there
appears to be relatively little ambiguity, and second, a manual pass through the ORFs
with strong similarities but no assigned function is made.

Techniques for automatically assigning functional roles are advancing rapidly. We
currently use the following approach for a translated ORF x from genome g1:

1.

2.

Compute similarities between the ORF and all sequences in the nonredundant
protein sequence database. Save those above some designated threshold.
Consider similarities against ORFs from a completely sequenced genome g2. If
x is similar to y from g2, and y is the protein in g2 closest to x, we say that y is a
best hit (BH) against x. If x is also the best hit in - g1 against y, then we say that
y is a bidirectional best hit (BBH).
Collect the set of BBHs for x. If the functional roles already assigned to those
BBHs are all identical, assign the same functional role to x.

This is a quite conservative approach, although it can still lead to errors.
Following the automated assignment of function, we recommend that the user of
WIT/WIT2 make a pass through the set of ORFs that have strong similarities to other
proteins with known functional roles but for which no automated assignment could be
made. WIT2 allows the user to peruse the BBHs for each protein, to align the protein
against other proteins of known function, to analyze regions of similarity, and so
forth. At this point, assignment of function is still a process of thoughtfully

3.

40

considering a wide range of alternatives, and the background of the user determines
the quality of the assignments. We believe that the rapid addition of new genomes
and the accumulation of a growing body of probable assignments of function,
together with consistency checks based on clustering protein sequences, will lead to a
situation in which most of the currently required judgment can be eliminated.
However, we are not yet close to that point.

An Initial Set of Pathways

Once the initial assignment of functional roles has been completed (i.e., once the
initial version of the entries in the protein-role table for the newly sequenced genome
has been generated), one normally proceeds to the assertion of function diagrams
(i.e., to the addition of entries to the asserted-diagrams table for the genome). As the
collection of analyzed genomes increases, it becomes ever more likely that each new
genome will contain a substantial similarity to a genome that has already been
analyzed. If a fairly similar (biochemically and phenotypically) organism has already
been analyzed, it is useful to begin the analysis of the new organism by asserting the
diagrams that are believed to exist from the already analyzed organism. Some of the
asserted pathways are likely to be wrong, but their removal can be deferred until after
the initial assignment of pathways.

In any event, the user should move through the major areas of metabolism and ask
the system to propose diagrams that might correspond to functionality present in the
organism. A system supporting metabolic reconstruction should be able to support
such requests. As we learn more about the reasoning required to accurately assert the
presence of pathways, the proposal of pathways by the system can become
increasingly precise. For now, we employ a very straightforward approach.

First, we take the entire collection of pathways and assign a score to each
pathway. The score for a pathway is

(I + 0.5U) / (I + U + M),

where I is the number of functional roles in the diagram that have been connected to
specific sequences in the genome, M is the number that have not been connected and
for which known examples from other genomes exist, and U is the number of
unconnected roles for which no exemplar exists from other genomes. This is a crude
measure of the fraction of the functional roles that have been identified, considering
that there are U roles for which reasoning by homology is impossible at this point.

Then, we sort the pathways by score and present to the user those that exceed
some specified threshold. The user is expected to go through each proposed pathway
and either assert it to the asserted-diagrams table or simply ignore the proposal.

Locating Missing Functions

41

After we have accumulated an initial set of asserted diagrams, a pass through this
asserted set must be made, focusing on the functional roles that remain unconnected
to specific ORFs in the genome. Here, the system can provide a very useful function
by collecting all known sequences that have been assigned the functional role,
tabulating all similarities between ORFs in the new genome and these existing
exemplars, and summarizing which of the existing ORFs is most likely to perform the
designated functional role. Without a tool like WIT/WIT2, this process would be
extremely time-consuming (and, in fact, would almost never be done systematically).
In WIT2, we made the design decision to precompute similarities between all ORFs
from the analyzed genomes and between these ORFs and entries in the nonredundant
protein database maintained by NCBI. This allows an immediate response to requests
to locate candidates for unconnected functional roles, summarizing BHs, BBHs, and
all other similarities. The disadvantage of such a design commitment is that the
collection of similarities is out of date almost immediately. Such a trade-off is
commonly faced in developing bioinformatics servers. In our case, the severity of the
problem is inevitably reduced by the addition of more genomes – that is, while the
system may well not have access to all relevant similarities, the chances of
establishing a solid connection between a new sequence and a previously analyzed
sequence with an established function improve dramatically as the set of completely
sequenced (and increasingly analyzed) genomes grow.

Once the system has located candidates for an unconnected functional role, the
process of actually coming to a conclusion about whether a given sequence should be
connected to the functional role is arbitrarily complex and corresponds to the types of
decisions made while doing the initial assignments. In this case, however, the user of
the system has the additional knowledge that assignments based on weak similarities
may be strongly supported by the presence of assignments to other functional roles
from the same diagram. This represents one of the pragmatic motivations for
developing metabolic reconstructions: they offer a means of developing strong
support for assignments based on relatively weak similarities.

We emphasize that the assertion of specific diagrams (i.e., pathways) should be
considered in the context of known biochemical and phenotypic data. A variety of
assignments cannot be made solely based on sequence similarities. For example, one
might consider the choice between malate dehydrogenase and lactate dehydrogenase.
Although examples of sequences that play these roles are extremely similar
(exhibiting almost arbitrarily strong similarity scores), the choice between these
functional roles often can be made only by using biochemical evidence or a more
detailed sequence analysis based on either the construction of trees or the analysis of
“signatures” (i.e., positions in the sequence that correlate with the functional role).
Similarly, the choice between assigning a functional role of aspartate oxidase,
fumarate reductase, or succinate dehydrogenase will require establishing an overview
of the lifestyle of the organism, followed by a detailed analysis of all related
sequences present in the genome. These examples are unusually difficult; in most
cases the determination of function is much more straightforward. Even in these
cases, however, the accumulation of more data will dramatically simplify things.

42

Balancing the Model

We turn now to the more difficult and critical step of balancing the model. By
balancing, we mean considering questions of the following form:

“Since we know this compound is present (because we have asserted a given
pathway for which it is a substrate), where does it come from? Is it
synthesized, or is it imported?’

This consideration holds for all substrates to pathways, coenzymes, prosthetic
groups, and so forth. In addition, we need to consider the issue of whether products
of pathways are consumed by other cellular processes or are excreted.

To begin this process, the user must first make tables including all substrates of
asserted pathways and all products of asserted pathways. As we stated above, our
simplified notion of function diagram does not require that substrates and products be
included. However, if one wishes to automate this aspect of metabolic reconstruction
(which we have not yet done), the data must be accurately encoded. Once such tables
exist, we can remove all compounds that occur as both substrates and products. Two
lists remain:

1.

2.

A list of substrates that are not synthesized by any process depicted in
any of the asserted function diagrams, and
A list of products that are not consumed by an processes depicted by
asserted diagrams.

The user must go through these lists carefully and assess how best to reconcile the
situation. This task may require searching for a protein that might be a potential
transporter, asserting a new pathway for which a limited amount of evidence exists,
or formulating some other hypothesis about what is going on.

Once the user has analyzed the situation as it relates to substrates and products of
pathways, a similar analysis must be applied to known cofactors, coenzymes, and
prosthetic groups. In this case, the logical issue of potential producers and consumers
of specific compounds must be analyzed, but additional issues relating to volumes of
flows can be analyzed. At this point, most of this type of analysis requires a
substantial amount of expertise, and many of the decisions are necessarily impossible
to make with any certainty. The situation is exacerbated by the difficulty of
determining the precise function of a wide class of transport proteins, as well as by
the potential for broad specificity for many enzymes. In this regard, while the
situation is currently tractable only for those with substantial biochemical
backgrounds (and not always by them), it is clearly possible that rapid advances in
our ability to perform more careful comparative analysis and to acquire biochemical
confirmation of conjectures will gradually simplify this aspect of metabolic
reconstruction, as well.

43

Coordinating the Development of Metabolic Reconstructions

A metabolic reconstruction can be done by a number of individuals, often sharing a
single model that is developed jointly. WIT2 includes the capability for multiple
users either to work jointly on a single metabolic reconstruction or to develop such
reconstructions in isolation. This is achieved as follows:

For each organism, a list of master users is installed. When these users alter a
model, the change is visible by all users of the system.
When a user logs into a version of WIT2, he chooses a “user ID’. Any set of
users sharing the same ID will be working on the same model.
When any non-master user alters a model (asserts the existence of a diagram or
makes an entry to the protein-role table), the change is visible only to the group
of users sharing the same user ID. The model constructed within a given user ID
should be viewed as an extension to the “standard” model generated by the
master users.
A metabolic reconstruction for an organism (corresponding to a designated user
ID) can be exported (i.e., converted to an external format), which can later be
imported to any other version of WIT2 that includes the data for the organism.

Our intent is that users develop metabolic reconstructions on many distinct Web
servers, but that they be able to conveniently import the efforts of others working on
the same genome.

Where Do We Stand?

At this point we are attempting to develop and maintain metabolic models for well
over twenty organisms representing a remarkable amount of phylogenetic diversity
(http://wit.at.msu). The development of these initial models will be, we believe, far
more difficult than the efforts required to add new models for more organisms that
are similar to these initially analyzed organisms. On the other hand, unicellular life
exhibits an enormous amount of diversity; and when the task of analyzing
multicellular organisms is contemplated, it is clear that an enormous amount of work
is required to attain even approximate metabolic reconstructions.

As we develop these initial models, we have noted a clear core of functionality
that is shared by a surprisingly varied set of organisms. Techniques for developing
clusters of proteins that are clearly homologous and that perform identical functions
in distinct organisms are now beginning to simplify efforts to develop metabolic
reconstructions. Such techniques are also leading to a clear hypothesis about the
historical origins of specific functions.

The task of constructing a detailed overview of the functional subsystems in
specific organisms is closely related to the issue of characterizing the functions or
genes in the gene pool. While specific organisms often have been analyzed in
isolation, it is rapidly becoming clear that comparative analysis is the key to

44

understanding even specific genomes and that characterization of the complete gene
pool for unicellular life is far more tractable than previously imagined. Our goal is to
develop accurate, although somewhat imprecise, functional overviews for unicellular
organisms and to use these as a foundation for the analysis of multicellular
eukaryotes. Just as protein families derived from unicellular organisms are beginning
to form the basis for assigning function to many eukaryotic proteins, an
understanding of the central metabolism of eukaryotes will be built on our rapidly
expanding understanding of the evolution of functional systems within unicellular
organisms.

A Growing Interest in Connecting Metabolic and Sequence Data

The growing perception that the metabolic structure must be encoded and used to
interpret the emerging body of sequence data has resulted in a number of projects.
Here we summarize the most successful of these projects at this time. With interest
expanding so rapidly, the reader is encouraged to do a network search for other sites,
which we believe will continue to appear at a growing rate.

KEGG (http://www.genome.ad.jp/kegg/kegg3.html) [4]: This outstanding effort,
based at Kyoto University in Japan, represents an attempt to maintain metabolic
overviews for sequenced genomes. It has connected the genes from specific
organisms to metabolic functions with excellent visual depictions of metabolic
maps.

Boehringer Manheim Biochemical Pathways (http://expasy.hcuge.ch/cgi-
bin/search-biochem-index): This excellent collection of metabolic pathways has
been recently integrated into the SwissProt effort, allowing one to move between
pathways, enzymes, and sequence data.

EcoCyc (http://www.ai.sri.com/ecocyc/ecocvc.html - Overview) [5]: This
database is a detailed encoding of the metabolism of Escherichia coli and
Haemophilus influenzae. Besides just the metabolic network, this collection
includes some of the kinetic and thermodynamic parameters (when they are
known).

Biocatalysis/Biodegradation Database
(http://dragon.labmed.umn.edu/~lynda/index.html) [3]: This database covers a
small, but significant, set of pathways that are of special interest in the area of
xenobiotic degradation.

SoyBase (http://probe.nal.usda.gov:8000/plant/aboutsoybase.html): This
databases captures genetic and metabolic data for soybeans.

Maize DB (http://teosinte.agron.missouri.edu/) [6]: This database is a
comprehensive collection of maize genetic and biochemical data.

45

Availability of the Pathways, Software, and Models

The PUMA (http://www.mcs.anl.gov/home/compbio/PUMA/Production/puma.
html), WIT (http://www.cme.msu.edu/WIT/) [7], and WIT2
(http://www . mcs. anl. gov/home/overbeek/WIT2/CGI/user.cgi) systems were
developed at Argonne National Laboratory in close cooperation with the team of
Evgeni Selkov in Russia. The beta release for WIT2 has been sent to four sites and is
currently available. The first actual release of WIT2 is scheduled for October 1997. It
will include all of the software required to install WIT2 and develop a local Web
server, all of our metabolic reconstructions for organisms with genomes in the
publicly available archives, and detailed instructions for adding any new genomes to
the existing system (perhaps, for local use only). Just as widespread availability of
the Metabolic Pathway Database has stimulated a number of projects relating to the
analysis of metabolic networks, we hope that the availability of WIT2 will foster the
development and open exchange of detailed metabolic reconstructions.

Acknowledgments

R.O. was supported by the U.S. Department of Energy, under Contract W-31-109-
Eng-38. N.L. was supported by the Center for Microbial Ecology at Michigan State
University (DEB 9120006). We also thank the Free Software Foundation and Larry
Wall for their excellent software.

References

1.

2.

Badger, J. H., and Olsen, G. J. CRITICA: Coding Region Identification Tool Invoking
Comparative Analysis, Molec. Bil. Evol., 1977, in press.
Borodovsky M., and Peresetsky, A. Deriving Non-Homogeneous DNA Markov Chain
Models by Cluster Analysis Algorithm Minimizing Multiple Alignment Entropy. Comput
Chemistry, 18, no. 3, 1994, pp. 259-267.
Ellis, L.B.M., and Wackett, L. P. A. Microbial Biocatalysis Database, Soc. Ind. Microb.
News. 45, no. 4, 1995, pp. 167-173.
Kanehisa, M., Toward Pathway Engineering: A New Database of Genetic and Molecular
Pathways, Science and Technology Japan, 59, 1996, pp. 34-38.
Karp, P, Riley, M., Paley, S., and Pellegrini-Toole, A. EcoCyc: Electronic Encyclopedia
of E. coli Genes and Metabolism, Nucleic Acids Research, 25, no. 1, 1997
Nelson, O., Coe, E., and Langdale, J., Genetic Nomenclature Guide. Maize. Trends
Genet., March, 1995, 20-21
Overbeek O., Larsen, N., Smith, W., Maltsev, N., and Selkov, E.. Representation of
Function: The Next Step. Gene-COMBIS (on-line): 31 January 1997; Gene 191, no. 1,:

Selkov, E., Basmanova, S., Gaasterland, T., Goryanin, I., Gretchkin, Y., Maltsev, N.,
Nenashev, V., Overbeek, R., .Panushkina, E., Pronevitch, I., Selkov Jr., E.., and Yunus,
I. The Methabolic Pathway Collection from EMP: The Enzymes and Metabolic Pathways
Database. Nucleic Acids Research, 24, no. 1 (database issue), 1996, pp. 26-29.

3.

4.

5.

6.

7.

GC1-9
8.

This page intentionally left blank.

4 ECOCYC: THE RESOURCE AND
THE LESSONS LEARNED

Peter D. Karp* and Monica Riley**

*SRI International, 333 Ravenswood Avenue, Menlo Park
CA 94025, USA, pkarp@ai.sri.Com

**Marine Biological Laboratory, Woods Hole, MA 02543,
mriley@mbl.edu

Introduction

The EcoCyc DB has several organizing principles. It is organized around the
bacterium E. coli K—12. It is organized at the level of a review in that a given entry
in the DB encodes information from a variety of sources about a single biological
entity, such as an enzyme. A former organizing principle of the DB was to focus on
information about enzymes and metabolic pathways; however, that focus is
broadening to include transport, regulation, and other aspects of gene function.

EcoCyc is more than a DB – it is also a suite of software tools for visualizing and
querying genomic and metabolic data. This chapter describes both the DB and the
software tools. It surveys the content of the DB, and the mechanisms by which new
data are acquired and validated. We close by discussing some of the lessons learned
from the EcoCyc project.

The EcoCyc Data

The EcoCyc DB describes the known genes of E. coli, the enzymes of small-
molecule metabolism that are encoded by these genes, the reactions catalyzed by
each enzyme, and the organization of these reactions into metabolic pathways. The
EcoCyc graphical user interface software (GUI) allows scientists to query, explore,
and visualize the EcoCyc DB. EcoCyc therefore integrates both genomic data and
detailed descriptions of the functions of gene products. The EcoCyc data were drawn
largely from (and contain 1650 citations to) the primary literature. In addition, some
data were obtained from other DBs.

EcoCyc has potential uses in addition to its role as a reference source on E. Coli.
Because of its links to sequence DBs such as Swiss-Prot, EcoCyc could be used to

48

perform function-based retrieval of DNA or protein sequences, such as to prepare
datasets for studies of protein structure--function relationships. Scientists who study
evolution of the metabolism could use EcoCyc to search out examples of duplication
and divergence of enzymes and pathways. EcoCyc provides a quantitative
foundation for performing simulations of the metabolism, although it currently lacks
the quantitative kinetics data needed by most simulation techniques.

EcoCyc has been used to predict the metabolic complements of H. pylori [5] and
of H. influenzae from their genomic sequences [15]. The latter metabolic prediction
was materialized in DB form and combined with the EcoCyc software to create an
encyclopedia ofthe H. influenzae genome, called HinCyc. This metabolic-analysis
technique extracts an added level of biological information from a genomic sequence,
and provides a biological validation of the gene identifications predicted by sequence
analysis.

Biotechnologists seek to design novel biochemical pathways that produce useful
chemical products (such as pharmaceuticals), or that catabolize unwanted chemicals
such as toxins. EcoCyc provides the wiring diagram of E. coli K—12, which
approximates the starting point for engineering; EcoCyc also describes the potential
engineering variations that can result from importing E. coli enzymes into other
organisms.

The EcoCyc Graphical User Interface

The EcoCyc GUI [7] provides graphical tools for visualizing and navigating through
an integrated collection of metabolic and genomic information (its retrieval
capabilities are described in [13]). For each type of biological object in the EcoCyc
DB, the GUI provides a corresponding visualization tool. There are tools for
visualizing pathways, reactions, compounds, and so forth. These tools dynamically
query the underlying DB for one or more objects and produce drawings specific to
those objects. All display algorithms are parameterized to allow the user to select the
visual presentation of an object that is most informative. For example, the algorithms
that produce automatic layouts of metabolic pathways can suppress the display of
enzyme names or side-compound names; they can also draw chemical structures for
the compounds within a pathway [9].

Organization of the EcoCyc Data

The EcoCyc data are stored within a frame knowledge representation system (FRS)
called Ocelot (its capabilities are similar to those of HyperTHEO, described in [10]).
FRSs use an object-oriented data model, and have several advantages over relational
DB management systems [6]. FRSs organize information within classes: collections
of objects that share similar properties and attributes. The EcoCyc schema is based
on the class hierarchy shown in Figure 1 [12]. All the biological entities described in
EcoCyc are instances of the classes in Figure 1. For example, each E. coli gene is

49

represented as an instance of the class Genes, and every known polypeptide is an
instance of the class Polypeptides.

We believe that the current version of EcoCyc contains all known enzymes and
pathways of E. coli small-molecule metabolism (we expect that more enzymes will be
discovered as the sequence of the E. coli genome is further analyzed). Table 1 lists
the number of instances within the EcoCyc DB of selected classes in Figure 1

Figure 1 : The top of the class hierarchy for the EcoCyc DB. The arrows in this figure
point from a general class of objects to a more specific class of objects; for example,
we divide the class Proteins into the subclasses Polypeptides and Protein-
Complexes.

Table 1 : The number of objects in several EcoCyc classes. The Enzymes row gives
the number of polypeptides or protein complexes that catalyze a reaction. The
numbers for Polypeptides and Protein Complexes also include some transport
proteins.

Each EcoCyc frame contains slots that describe attributes of the biological object
that the frame represents, or that encode a relationship among that object and other
objects. For example, the slots of a polypeptide frame encode the molecular weight
of the polypeptide, the gene that encodes it, and its cellular location.

50

The scope of the data within EcoCyc is slowly expanding over time. The DB now
describes most known E. coli genes; it describes those gene products that are
enzymes involved in small-molecule metabolism, or that are tRNA synthetases, or
that are involved in two-component signal transduction systems. It also describes
gene products that are tRNAs. In the near future, we are planning to add descriptions
of gene products that are transport proteins, or regulatory proteins.

New information is entered into EcoCyc using a combination of graphical editing
tools. Some of these tools are specialized for entry of metabolic data, including
graphical editors for reactions, compounds, and pathways. In addition, a domain-
independent KB browsing and editing tool called the GKB Editor allows interactive
editing of the EcoCyc class hierarchy, of a semantic-network view of the EcoCyc
KB, and of individual EcoCyc frames; it also allows EcoCyc data to be transferred to
a spreadsheet [17, 19].

Data validation techniques used in EcoCyc are described in [13].

We next describe the major classes of information within EcoCyc, the sources
from which the information was obtained, and the visualization tools associated with
those classes.

Genes

Most information on E. coli genes in EcoCyc was obtained from the EcoGene DB
version 7 [2]. In the near future that information will be superseded by information
from the full E. coli DNA sequence [3]. EcoGene provides synonyms for gene
names, physical map positions for all sequenced genes, and the direction of
transcription for each gene. We supplemented the information in EcoGene
significantly by adding descriptions of additional E. coli genes obtained from the
literature and from SwissProt. EcoCyc contains 3030 genes, of which 2571 have
assigned genomic map positions. The map positions in EcoCyc version 3.7 were
obtained from the EcoGene DB, but in the near future we wil obtain map positions
from the full E. coli genomic sequence [3]

The visualization tool that generates gene-display windows lists information such
as the map position of the gene on the E. coli chromosome (in units of centisomes, or
hundredths of a chromosome), the class(es) to which the gene was assigned, and the
direction of transcription. The gene product is listed (when known); when the
product is an enzyme known to EcoCyc, the display shows the equation(s) of the
reaction(s) catalyzed by the enzyme, and the pathways that contain those reactions.

We have classified EcoCyc genes according to two different classification
systems. The first is based on the physiological role of the gene product (e.g., all
genes whose products are involved in tryptophan biosynthesis, including enzymes
and regulatory proteins, are in a single category) [20]. The second system is coarser,
and assigns each gene product to one of the following classes: Enzymes, Regulators,
Leaders, Membrane Proteins, Transporters, Structural Proteins, RNAs, Factors,
Carriers, and products of unknown function.

51

The Gene--Reaction Schematic

The many-to-many relationships among genes, enzymes, and reactions can be
complex. An enzyme composed of several subunits might catalyze more than one
reaction, and a given reaction might be catalyzed by multiple enzymes. The Gene�
Reaction Schematic depicts the relationships among a set of genes, enzymes, and
reactions (see Figure 2). It is generated by starting with the object that is the focus of
the current window (which is highlighted in the schematic), and then recursively
traversing KB relationships from that object to related objects, such as from a gene to
its product, or from a reaction to the enzyme(s) that catalyzes it. The schematic
summarizes these complex relationships succinctly, and also constitutes a
navigational aid—the user can click on an object in the schematic to cause EcoCyc to
display that object.

The first schematic in Figure 2 means that the trpA gene encodes a polypeptide
(the circle to the left of the box for the trpA gene) that forms a heterotetramer (the
next circle to the left —the 2 indicates two copies) that also contains two copies of
the product of the trpB gene. That complex in turn catalyzes reaction 4.2.1.20. The
second schematic (reading down the column) depicts three isozymes (two
homodimers and a homotetramer) that catalyze reaction 4.2.1.2. The third schematic
depicts a bifunctional polypeptide, and the fourth schematic depicts a case where a
homodimer of the TrpD polypeptide catalyzes one reaction, and a heterotetramer of
TrpD and TrpE catalyzes a second reaction. The fourth schematic depicts two
isozymes that each are heterotetramers. The fifth schematic depicts the ATP
synthase protein, which consists of a large complex containing two subcomplexes.

Schematics also include modified forms of a protein (or tRNA) when relevant.
For example, the schematic for the acyl carrier protein shows both a yellow circle for
the unmodified form of the protein, and 13 orange circles, which represent different
modified forms of the protein.

52

Figure 2: A set of gene--reaction schematics. Some of the reactions in the largest
schematic have no assigned EC number. The boxes to the left represent reactions,
the boxes on the right represent genes, and the circles in the middle represent
proteins. The lines indicate relationships among these objects. The schematic is
drawn in gene windows, reaction windows, and protein windows.

Reactions

The reactions within EcoCyc were gathered from biomedical literature on E.coli. In
addition, we incorporated many non-E. coli reactions and 269 reaction classes that
constitute the enzyme classification system [21] from the ENZYME DB [l]. EcoCyc
therefore contains many reactions not found in E.coli, for reference purposes.
EcoCyc reaction windows state whether or not we have evidence that a given reaction
occurs in E.coli.

The reaction display window shows the class(es) containing the reaction within
the classification of reactions. It shows the one or more enzymes that catalyze the
reaction, the gene(s) that code for the enzymes, and the pathway that contains the
reaction. The display shows the EC number for the reaction, and the reaction
equation. Note that there exists a one-to-one mapping between EC numbers and
reactions, but not between EC numbers and enzymes [11], therefore, we label
reactions, and not enzymes, with the EC number. The standard change in Gibbs free
energy of the reaction is listed when known.

Proteins

53

EcoCyc contains extensive information about E. coli enzymes and pathways that we
obtained from the biomedical literature. We performed a comprehensive literature
search for each E. coli enzyme, reaction, and pathway by using Medline, the E. coli--
Salmonella book [16], and biochemistry textbooks. We searched for other pertinent
papers by following citations in journal articles and in the Science Citation Index.

In the EcoCyc schema, all enzyme objects are instances of the class of all proteins,
which we call Proteins; it is partitioned into two subclasses: Protein-
Complexes and Polypeptides. These two classes have several common
properties, such as molecular weight (when the stoichiometry of the protein-complex
is known), cellular location, and a link to any reactions catalyzed by the protein.
They differ in that Protein-Complexes have slots that link them to their
subunits, whereas Polypeptides have a slot that identifies their gene. We record
whether sequence-similarity relationships exist among a set of isozymes, and we
provide links to the SwissProt, PDB, and Swiss-Model entries for a polypeptide.
Proteins are listed as a subclass of chemicals since in some cases proteins themselves
are substrates in a reaction (such as phosphorylation reactions).

For each enzyme, we have written comments that address topics such as reaction
mechanism, subreactions of complex reactions, interactions of subunits of complex
enzymes, formation of complexes with other proteins, breadth of substrate
specificity, mode of action of inhibitors and activators, place and function of
reactions in metabolic pathways, other reactions catalyzed by the protein, and
relationship of the protein to other proteins catalyzing the same reaction.

Protein windows¹ are complicated because of the many-to-many relationship between
enzymes and reactions (one enzyme can catalyze multiple reactions, and each
catalytic activity of an enzyme can be influenced by different cofactors, activators,
and inhibitors), and because many genes can encode the subunits of a protein
complex. The protein window is potentially divided into sections to address these
complexities.

The first section of the window lists general properties of the protein, such as
synonyms and molecular weight. Subsequent sections of the window describe each
catalytic activity of the protein, if it is an enzyme. Each activity section lists a
reaction catalyzed by the enzyme, and the enzyme name (and synonyms) for that
activity. The substrate specificity of the enzyme is described in some cases by listing
alternative compounds that the enzyme will accept for a specified substrate. The
cofactor(s) and prosthetic groups required by the enzyme are listed next,² along with
any known alternative compounds for a specified cofactor. Activators and inhibitors
of the enzyme are listed, qualified as to the mechanism of action, when known. In
addition, this section indicates which of the listed activators and inhibitors are known
to be of physiological relevance, as opposed to whether the effects are known purely
because of in vitro studies. For a multifunctional nzyme, the descriptions of substrate

¹ See URL http://ecocyc.ai.sri.com: 1555//NEW IMAGE?type=ENZYME\&object=
LACTALDREDUCT-CPLX for an example.

54

specificity, cofactors, activators, and inhibitors are all tied to the enzyme activity to
which they pertain. For more details on how this information is represented in
EcoCyc, see [11].

Pathways

Pathway frames list the reactions that make up a pathway, and describe the ordering
of those reactions within the pathway. Information about the ordering of reactions
within a pathway is ncoded using a predecessor-list representation [8], which for each
reaction in a pathway lists the reactions that precede it in the pathway. This
representation allows us to capture complex pathway topologies, yet does not require
entering information that is redundant with respect to existing reaction objects. We
developed algorithms for deriving a graph description of the pathway from the
predecessor list [8].

The DB uses objects called superpathways to define a new pathway as an
interconnected cluster of smaller pathways. For example, a superpathway called
"complete aromatic amino-acid biosynthesis" links together the individual pathways
for biosynthesis of chorismate, tryptophan, tyrosine, and phenylalanine.
Superpathways are also defined using the predecessor list [8]. EcoCyc currently
contains 123 pathways and 34 superpathways.

All pathway drawings in EcoCyc are computed automatically using pathway-
layout algorithms (see Figure 3). EcoCyc can draw pathways at multiple levels of
detail, ranging from a skeletal view of a pathway that depicts the compounds only at
the periphery of the pathway and at internal branch points, to a detailed view that
shows full structures for every compound, and EC numbers, enzyme names, and gene
names at every reaction step. Users can select among these views by clicking on
buttons labeled More Detail and Less Detail.

Compounds

The class Chemicals subsumes all chemical compounds in the E. coli cell, such as
macromolecules and smaller compounds that act as enzyme substrates, activators,
and inhibitors. It also includes some of the elements of the periodic table. Small
metabolites contained in EcoCyc are reaction substrates, and enzyme cofactors,
activators, and inhibitors.

EcoCyc contains 1294 compounds; two-dimensional structures are recorded for
965 of them. Among the properties encoded for compounds are synonyms for their
names, molecular weight, empirical formula, lists of bonds and atoms that encode
chemical structures, and two-dimensional display coordinates for each atom that
permit drawings of compound structures.

A compound display lists all EcoCyc reactions in which the compound appears,
sorted by the pathways that contain each reaction. The display of chemical structures

55

within compound windows uses a concept called superatoms, which is a hierarchical
structuring of chemical structures. For example, the structure for succinyl-CoA is
initially displayed with the word

"
CoA” in place of the structure of the CoA moiety.

If the user clicks on the word CoA, however, the full structure of that moiety is
displayed.

Figure 3: An EcoCyc drawing of the pathway for rhamnose catabolism. The small
circle at the bottom of the pathway window depicts the positions on the E. coli
genomic map of the genes that encode the enzymes within the current pathway.
When the user moves the mouse over a given gene, its name is printed at the bottom
of the EcoCyc window; clicking on the gene causes EcoCyc to display a window for
that gene.

The Metabolic-Map Overview

The Overview diagram is a drawing of all known metabolic pathways of E.coli. In
this diagram, each circle represents a single metabolite, and each line represents a
single bioreaction. Neither the circles nor the lines are unique in the sense that a
given metabolite (or a given reaction) may occur in more than one position in the

56

diagram. The "barbells" along the right side of the diagram represent approximately
200 individual reactions that have not been assigned to a particular pathway. They
are presented as single reactions because their direction and role are determined by
the metabolic condition of the cell. (The barbell region also contains some reactions
of macromolecule metabolism, such as tRNA charging and DNA metabolism.) In the
pathway region to the left of the barbells, the glycolysis and the TCA cycle pathways
in the middle separate predominately catabolic pathways on the right from pathways
of anabolism and intermediary metabolism on the left. The existence of anaplerotic
pathways prevents rigid classification. The pathway region contains 500 reactions
organized into 123 pathways. The majority of those pathways operate in the
downward direction.

A user can interrogate the Overview in several ways. To identify a compound
within the Overview, the user moves the mouse pointer over a circle in the diagram
— EcoCyc prints the name of the metabolite and the name of the containing pathway
at the bottom of the screen. To identify a reaction, the user moves the mouse pointer
over a line — the program prints the equation of that reaction, and the name of the
containing pathway. If the user left-clicks on a compound or a reaction in the
Overview, that object is displayed in its own display window. The user can also
highlight objects in the Overview, such as finding a compound by name or finding a
reaction by EC number.

Genomic-Map Displays

We have developed several methods for a scientist to visualize relationships among
the roughly 1500 mapped E. coli genes in the EcoCyc KB. These methods are based
on map display tools that allow the user to view the distributions of genes on a map at
multiple resolutions.

The first visualization tool provides a linear depiction of the chromosome (see
figure 4). Initially, a low-resolution view of the entire chromosome is available. The
user can zoom in on a region of the chromosome in several ways. Middle clicking on
any of the gene names shown in a higher-resolution drawing of the region of the
chromosome centered on that gene. These high-resolution child maps can be
generated to any desired level; that is, one can also click on a gene in a child map to
produce yet more resolution. The user can also zoom by left clicking on the vertical
line representing the chromosome, or by specifying a centisome position or a gene
name. EcoCyc produces as many levels of child maps as are necessary to show the
requested information.

57

Figure 4: The EcoCyc linear map browser. Sections of the chromosome are shown
at three resolutions. In the rightmost section, the coding region for each gene is
shown with a vertical line.

The linear partial map allows an investigator to examine map relationships among
subsets of E. coli genes by beginning with a display of the chromosome with no
genes present, and selectively adding genes to the window. The genes to be added
can be selected by several criteria: by name (such as hisE); by matching a substring
against all gene names (such as "his"); as members of one of the classes of all E. coli
genes defined by Riley [20]; or the set of genes coding for enzymes in a chosen
biochemical pathway.

The user can consecutively add sets of genes according to these criteria, and can
undo previous add operations in reverse order. For example, the user might add all
genes in the biosynthetic pathways for tryptophan, tyrosine, and phenylalanine, and
then add all genes coding for membrane proteins. The zoom capabilities described in
conjunction with the full map also work for the partial map.

The second tool displays the full map in circular form, with similar
zooming capabilities.

58

Retrieval Operations

EcoCyc provides the user with two classes of DB retrieval operations: direct retrieval
through menus of predefined queries, and indirect retrieval through hypertext
navigation [13]. For example, imagine that a user seeks information on the hisA
gene, such as its map position and information about the enzyme it encodes. EcoCyc
allows the user to call up an information window for that gene directly by querying
the gene name.

The indirect approach consists of hypertext navigation among the information
windows for related objects. Such navigation allows the user to find the hisA gene by
traversing many paths through the DB. The user could issue a direct query to display
the biosynthetic pathway for histidine, and then click on the name of the enzyme at
the last step in the pathway. The resulting information window for that enzyme
shows the name of the gene (hisA) coding for the enzyme. Clicking on the gene
name displays the information window for (hisA). Alternatively, the user could query
the compound histidine by name. The resulting window lists all reactions involving
histidine; the user can click on a reaction to navigate to its window, which lists all
enzymes that catalyze the reaction, plus all genes encoding those enzymes (including
hisA).

Software Architecture and Distribution

EcoCyc is implemented in Common Lisp with a graphical-interface toolkit called the
Common Lisp Interface Manager (CLIM). The architecture of the EcoCyc
development environment is shown in Figure 5. EcoCyc is available under license
through the WWW, as a program that runs on the Sun workstation, and as a set of flat
files. See the EcoCyc WWW pages at URL
http://www.ai.sri.com/ecocyc / for more information.

59

Figure 5: The software architecture of EcoCyc. The components include a graph-
management system called Grasper-CL [14], an API for FRSs called the Generic
Frame Protocol, and the CWEST tool for retrofitting CLlM applications to run through
the WWW [18].

Lessons Learned from the EcoCyc Project

This section presents the bioinformatics contributions of the EcoCyc project and the
lessons learned in the course of the project, and notes properties of EcoCyc that
distinguish it from some other biological DBs.

One lesson learned is that metabolic-pathway DBs are a useful addition to the
repertoire of biological DBs. They provide a reference source on metabolic
pathways. They have been successfully used to predict the metabolic complements
of organisms from their genomic sequence [15]. Other potential applications of these
DBs include pathway design for biotechnology [14], and simulation of metabolic
pathways.

It is useful to organize pathway databases as a collection of multiple types of
biological objects: pathways, reactions, enzymes, genes, and compounds. This
organization is to be contrasted with that of biological databases such as GenBank,
Swiss—Prot, and PDB, which contain only a single type of biological object.

Metabolic information is complex. The EcoCyc project has explored issues in the
representation of metabolic pathways, reactions, and enzymes, and has developed an
ontology for metabolic information that could be reused by other metabolic DBs [11,
8]. Most past biological DBs have encoded biological function within English text
fields of the DB, whereas we have developed structured, declarative representations
of function with which the user can query and compute. We have emphasized the
development and publishing of our ontology because of the complexities of
representing enzyme function and metabolic pathways. However, we believe that
other biological-DB projects would benefit from a similar emphasis. Publication of
ontologies both increases the understanding of the DB in the user community and
aids the developers of other similar DBs.

We have designed graphical presentations of metabolic information for the
EcoCyc GUI, and algorithms for generating those presentations, including automated
layout algorithms for metabolic pathways [9].

The knowledge-acquisition problem has been a serious concern throughout the
EcoCyc project. The problem is that of translating information in the scientific
literature into a set of interconnected frames within a KB. The problem is
particularly severe because EcoCyc contains so many different object classes. The
process of describing a single complex metabolic pathway could involve creating
several dozen different instances of four different classes, all of which must be
properly linked. We have addressed this problem in three different ways: we have
developed pathway-specific graphical tools for entry of pathway, reaction, and
enzyme information; we also employ a general KB browsing and editing tool that is

60

not independent of biology; finally, we have extensively trained the project members
who perform knowledge entry. The advantage of domain-independent knowledge
acquisition tools is that they can be reused across application domains; however, for
most tasks they cannot compete with the speed and intuitiveness of domain-specific
tools.

Another advantage of graphical knowledge acquisition tools is that they can
perform immediate checking of new information. In the first few years of our
project, knowledge was entered into structured text files by one group of people, and
then loaded into the KB by a second group of people who ran parsers over the files.
The inevitable errors and inconsistencies in the information were time consuming for
the two groups to resolve.

In its early phases, the EcoCyc project collected kinetics data for each metabolic
enzyme. We ceased to collect this data upon discovering that the data are extremely
time consuming to collect because there are large amounts of kinetics data in the
literature, and upon discovering that this information is of relatively low utility
because the data are collected under widely varying experimental conditions, and
therefore cannot easily be combined to produce a coherent simulation of a set of
enzymes under a single condition.

EcoCyc employs a frame knowledge representation system as its data management
substrate. Its schema-evolution capabilities have simplified the development of the
EcoCyc schema. Its object-oriented data model has yielded a much simpler and more
comprehensible schema than would be possible under the relational model.

Development of the EcoCyc GUI began before invention of the WWW; therefore,
EcoCyc was developed using a Common Lisp X-windows environment. We were
able to retrofit EcoCyc to run through the WWW in addition to X-windows through
the use of a tool called CWEST. CWEST translates low-level data structures
produced by the Common Lisp windowing system into a combination of GIF images
and HTML pages, and allowed us to adapt EcoCyc to the WWW with relatively little
effort. Our use of a powerful windowing system was an extremely positive decision.

References

1.
2.

3.

Bairoch. The ENZYME databank in 1995. Nucl Acids Res, 24:221--222, 1996.
Berlyn, K. Brooks Low, K.E. Rudd, and M. Singer. Linkage map of Escherichia
coli K—12, edition 9. In Neidhardt et al. [16], pages 1715--1902.
Blattner, G. Plunkett III, C.A. Bloch, N.T. Perna, V. Burland, M. Riley, J.
Collado-Vides, J.D. Glasner, C.K. Rode, G.F. Mayhew, J. Gregor, N.W. Davis,
H.A. Kirkpatrick, M.A. Goeden, D.J. Rose, B. Mau, and Y. Shao. The complete
genome sequence of Escherichia coli K—12. Science, 277: 1453--1462, 1997.

4. Cameron and I. Tong. Cellular and metabolic engineering: An overview.
Applied Biochemistry and Biotechnology, 38: 105--140, 1993.

5. J.-F. Tomb et al. The complete genome sequence of the gastric pathogen
Helicobacter pylori. Nature, 388539--547, 1997.

61

6. Karp. Frame representation and relational data bases: Alternative information-
management technologies for systematics. In R. Fortuner, editor, Advanced
Computer Methods for Systematic Biology: Artificial Intelligence, Database
Systems, Computer Vision, page 560. The Johns Hopkins University Press, 1993.
Karp. The EcoCyc user's guide.unpublished; see WWW URL
ftp://ftp.ai.sri.com/pub/papers/karp-ecocyc-
guide.ps.Z,1996.
Karp and S. Paley. Representations of metabolic knowledge: Pathways. In R.
Altman, D. Brutlag, P. Karp, R. Lathrop, and D. Searls, editors, Proceedings of
the Second International Conference on Intelligent Systems for Molecular
Biology, pages 203--211, Menlo Park, CA, 1994. AAAI Press.
Karp and S. Paley. Automated drawing of metabolic pathways. In H. Lim, C.
Cantor, and R. Robbins, editors, Proceedings of the Third International
Conference on Bioinformatics and Genome Research}, pages 225--238. World
Scientific Publishing Co., 1995. See also WWW URL
ftp://ftp.ai.sri.com/pub/papers/karp-bigr94.ps.Z.

Computational Biology, 3(1):191--212, 1996.

Searls, and J. Shavlik, editors, Proceedings of the First International
Conference on Intelligent Systems for Molecular Biology, pages 207--215,
Menlo Park, CA, 1993. AAAI Press.

12. Karp and M. Riley. Guide to the EcoCyc schema. unpublished; see WWW
URLftp://ftp.ai.sri.com/pub/papers/karp-ecocyc-
schema.ps,1996.

13. Karp, M. Riley, S. Paley, A. Pellegrini-Toole, and M. Krummenacker. EcoCyc:
Electronic encyclopedia of E. coli genes and metabolism. Nuc. Acids Res.,

14. Karp, J.D. Lowrance, T.M. Strat, and D.E. Wilkins. The Grasper-CL graph

7.

8.

9.

10. Karp and S. Paley. Integrated access to metabolic and genomic data. Journal of

11. Karp and M. Riley. Representations of metabolic knowledge. In L. Hunter, D.

25(1):43--50, 1997.

management system. LISP and Symbolic Computation, 7:245--282, 1994. See
also SRI Artificial Intelligence Center Technical Report 52 1.

15. Karp, C. Ouzounis, and S.M. Paley. HinCyc: A knowledge base of the complete
genome and metabolic pathways of H. influenzae. In D.J. States, P. Agarwal, T.
Gaasterland, L. Hunter, and R. Smith, editors, Proceedings of the Fourth
International Conference on Intelligent Systems for Molecular Biology, pages
116--124, Menlo Park, CA, 1996. AAAI Press.

16. Neidhardt, III R. Curtiss, J. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.
Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger, editors. Escherichia
coli and Salmonella, 2nd edition. ASM Press, 1996.

http://www.ai.sri.com/~gkb/user-man.html,1996.
17. Paley and P. Karp. GKB Editor user manual. Available via WWW URL

18. Paley and P.D. Karp. Adapting EcoCyc for use on the World Wide Web. Gene,
172(1):GC43--50, 1996.

62

19. Suzanne M. Paley, John D. Lowrance, and Peter D. Karp. A generic knowledge-
base browser and editor. In Proceedings of the 1997 National Conference on
Artificial Intelligence, 1997.

20. Riley. Functions of the gene products of Escherichia coli. Microbiological
Reviews, 57:862--952, 1993.

2 1. Edwin C. Webb. Enzyme Nomenclature, 1992: Recommendations ofthe
nomenclature committee of the International Union of Biochemistry and
Molecular Biology on the nomenclature and classification of enzymes.
Academic Press, 1992.

5 KEGG: FROM GENES TO
BIOCHEMICAL PATHWAYS

Minoru Kanehisa

Institute for Chemical Research, Kyoto University, Kyoto,
Japan

Introduction

Molecular biology has been a discipline dominated by the reductionistic approach
where starting from a specific functional aspect of a biological organism the genes
and proteins that are responsible for the function are searched and characterized. In
contrast, the complete set of genes and gene products that has become available by
the whole genome sequencing is a starting point of an alternative approach, which
may be called a synthetic approach, toward understanding how genes and molecules
are networked to form a biological system. While it is unlikely that the reductionistic
approach alone can cover the entire aspects of the biological system, the synthetic
approach has a potential to provide a complete picture because the starting set of
building blocks is complete. In reality, however, the complete genome sequence does
not tell much about how the organism functions as a biological system. This is not
only because we do not yet have appropriate means to interpret the sequence data,
but also because all the information to build up a biological system may not be
present in the genome.

KEGG (Kyoto Encyclopedia of Genes and Genomes) is an effort to make links
from the gene catalogs generated by the genome sequencing projects to the
biochemical pathways that may be considered wiring-diagrams of genes and
molecules [1]. Specifically, the objectives of KEGG are the following:
1. to computerize all aspects of cellular functions in terms of the pathway of

interacting molecules or genes,

to maintain gene catalogs for all organisms and link each gene product to a
pathway component,

2.

64

3. to organize a database of all chemical compounds in the cell and link each
compound to a pathway component, and

to develop computational technologies for pathway comparison, reconstruction,
and analysis.

4.

KEGG is publicly made available as part of the Japanese GenomeNet Service [2].
The WWW addresses that are relevant to this chapter are summarized in Table 1.

Table 1. The Japanese GenomeNet service

Data Representation in KEGG

Level of abstraction

As illustrated in Figure 1, a cysteine is a network of carbon, nitrogen, oxygen,
hydrogen, and sulfur atoms at the atomic level, but it is abstracted to letter C at the
molecular level where a protein is represented by a one-dimensional network of
twenty letters (amino acids). In the next network level the protein is abstracted to a
symbol, Ras, and the wiring among different symbols (proteins) is the major concern
as in this case of Ras signal transduction pathway. Most of the current molecular
biology databases contain the data at either the molecular level or the atomic level
focusing on the information that is associated with protein and nucleic acid
molecules, such as the sequence databases and the 3D structural databases.
Consequently, the majority of the current computational methods in molecular
biology involves comparison and analysis of sequence data or 3D atomic coordinate
data. The main role of KEGG is to fill the gap at the network level by computerizing
current knowledge of biochemical pathways and by developing associated
computational technologies. KEGG also intends to fill another gap at the atomic
level, which is the lack of good public resources for chemical compounds.

65

Figure 1 : Level of abstractions in molecular biology.

Binary relations

An important concept in KEGG is the binary relation that represents any relation
between two elements [3]. Of course, the real-world data can better be represented by
considering ternary, quaternary, and higher relations, but for the sake of logical
simplicity and computational efficiency KEGG imposes the view of binary relations.
A major class of binary relation is an interaction between two molecules or between
two genes, which may be considered wiring information of the biological system.
Generally speaking, building blocks can contain all necessary wiring information as
in the jigsaw puzzle, but in reality building blocks of life are more like Lego blocks
that can be used in many different ways. KEGG computerizes the information of
interactions and wiring, thus complementing the existing databases for the
information of building blocks.

66

Figure 2: Data representation in KEGG.

Different types of networks

Figure 2 illustrates the data hierarchy in KEGG that consists of elements, binary
relations, and networks, and also examples of different types of networks. A network
is any type of relationship among a set of elements. For example, the biochemical
pathway is a network of interacting molecules and the genome is a one-dimensional
network of genes. The information of neighbors that can be computed by sequence
similarity search or 3D structural similarity search among a set of molecules also
forms a complex network. The similarity relationship is often better organized in the
form of a hierarchy, such as the superfamily classification or the 3D fold
classification, which is still another type of network.

Table 2 summarizes the actual implementation of different types of networks in
KEGG. The biochemical pathway is represented by the graphical pathway map,
which is handled as a GIF image map by HTML, CGI scripts, and Java applets. The
genomic information is represented by the gene catalog that is a functional hierarchy
of genes and the graphical genome map. The gene catalog as well as the catalog of
proteins and other molecules is handled by the CGI script for, what we call,

67

hierarchical text. The genome map is handled by Java applets. The sequence
similarity relationships of genes within and across species are analyzed in KEGG to
identify functional relationships. Thus, the information of orthologous and
paralogous genes is represented in the ortholog group table, which is a simple HTML
table.

Table 2. Different types of network data in KEGG.

Database Management Systems

DBGET/LinkDB system

The DBGETLinkDB system [4] is an in-house developed database management
system written in C++ that provides the basis for integrating different resources
within KEGG and also with other existing databases. DBGETLinkDB integrates a
diverse range of databases at the level of entries. An entry in the web of molecular
biology databases is uniquely identified by the combination of the database name and
the entry name (or accession number)

database:entry

and the relation between two entries within and across databases is represented by the
binary relation:

database1:entry1 database2:entry2

This concept has been extended to include gene catalogs in KEGG. Any gene (or
gene product) in the web of biological organisms is uniquely identified by the
combination of the organism name and the gene name

organism:gene

and the relation between two genes (or gene products) within and across organisms is
represented by the binary relation:

68

organism1:gene1 organism2:gene2

Table 3 shows the list of databases currently supported by DBGET/LinkDB in the
Japanese GenomeNet service. LinkDB is the database of binary relations containing
original links annotated by each database, reverse links and indirect links that are
obtained by combining multiple links, and similarity links that are computationally
derived by BLAST and FASTA searches. DBGET/LinkDB is a network distributed
database system, so that the user can add local databases to be integrated with the
GenomeNet databases.

Table 3. The databases supported by DBGET/LinkDB in GenomeNet.

DBGET/LinkDB allows generic naming of the database names, such as DNA for
GenBank + EMBL and protein for SWISS-PROT + PIR + PRF + PDBSTR. This
mechanism is used to define the GENES database that is the collection of all gene
catalogs in KEGG. The PATHWAY database is the DBGET implementation of the
collection of all biochemical pathways in KEGG, where each entry is a GIF image
map for the pathway diagram. In addition to GENES and PATHWAY, the LIGAND
database [5] is also a product of the KEGG project. LIGAND is a composite
database currently consisting of two sections: ENZYME for enzymatic reactions and
COMPOUND for chemical compounds.

KEGG system

While the DBGET/LinkDB system is designed to manipulate databases at the entry
level, the KEGG system is designed to handle specific data items in each entry of the
KEGG databases, such as genes, enzymes, and compounds. The KEGG system is
under continuous development, but as of June 1998 it consists of the following
programs:

(1) CGI scripts to search and color GIF image maps

69

(2) Java applets to search, compare, and handle genome maps

(3) CGI scripts to search and handle hierarchical texts

(4) CGI scripts to search and color HTML tables

(5) a suite of software tools for network comparison and pathway reconstruction

The major types of network data shown in Table 2 can be searched in different
ways as summarized in Table 4. These capabilities effectively make it possible to
perform network comparisons. In fact, it is the main purpose of the KEGG system to
treat a network or a subnetwork as a unit. Of course, a KEGG query can be made
with a single element against a network, but it is better made with multiple elements
against a network to see if, for example, a correct subnetwork (functional unit) is
formed.

Table 4. Searching elements in the KEGG network data.

Actually, the traditional sequence alignment is a network comparison problem
with relatively stringent conditions; namely, the network is one-dimensional and the
order of network elements (amino acids or nucleotides) cannot be changed. The
network comparison in KEGG is a more general problem. By comparing a genome
and a pathway we wish to identify localized genes in the genome, for example, genes
in an operon, that function in a closely related positions in the biochemical pathway.
By comparing a sequence similarity network (neighbor) and a pathway we wish to
identify duplicated genes forming successive steps in the biochemical pathway. A
general algorithm to compare different types of networks was developed (H. Ogata,
W. Fujibuchi, and M. Kanehisa, manuscript in preparation), has been used in
organizing ortholog group tables (see below), and is provided as software tools in the
KEGG system.

Relational database system

An entry of GENES contains, among others, amino acid and nucleotide sequence
information that is extracted from the GenBank database, but the description of the
gene can be different from GenBank because the functional assignment is re-
examined by KEGG. To help this process and to manage updates of the GENES
database we use the Sybase relational database system. The system, which is linked
to a Web-based gene annotation tool, is limited to internal use.

70

Data Organization in KEGG

Biochemical pathways

KEGG contains most of the known metabolic pathways, especially for the
intermediary metabolism, that are represented by about 100 graphical diagrams
(pathway maps). In addition, we are adding various types of regulatory pathways
such as membrane transport, signal transduction, cell cycle, transcription, and
translation, as well as the information of molecular assemblies. Each pathway
diagram is drawn and continuously updated manually. For metabolic pathways the
manually drawn diagrams are considered as references of biochemical knowledge
containing all chemically identified reaction pathways. The organism-specific
pathways are then automatically generated by matching the enzyme genes in the gene
catalog with the enzymes on the reference pathway diagrams according to the EC
number. The matched enzymes are colored green in the pathway diagrams. This
matching process is possible because the intermediary metabolism is relatively well
conserved among different organisms. In contrast, the regulatory pathways are too
divergent to be represented in a single reference diagram; they are drawn separately
for each organism.

Gene catalogs and genome maps

The information of genes and genomes is taken from GenBank and organized as the
gene catalog and the genome map. The gene catalog contains classifications of all
known genes for each organism. Depending on how one views the function, genes
may be classified in different ways. KEGG provides its own classification scheme
according to the pathway classification, as well as another scheme by the original
authors which is often a variant of Riley's classification [6]. As mentioned the
functional assignment of genes is re-examined by KEGG. The genome map is
presented to help understand the positional information of genes, such as an operon
structure, and its relationship with the pathways and assemblies. Genome maps are
manipulated graphically by Java applets.

In order to cope with an increasing number of complete genomes, we are trying to
automate as much as possible the EC number assignment that is critical to generate
organism-specific metabolic pathways and the gene function assignment. Both
assignments are based not only on sequence similarity, but also on additional
information including the positional information in the genome and the orthologous
relation with different species. Since the operon structure is widespread in bacteria
and archaea, the genome map browser has turned out to be an indispensable tool for
gene function assignment.

Ortholog group tables

Sequence similarity search against the existing sequence databases often generates a
long list of hits, which requires human efforts to screen out orthologous relations that

71

can be used for gene function assignments. The KEGG ortholog group tables are a
clean reference data set of orthologous relations that is intended to make this process
easier. The table contains not only the information of orthologous and paralogous
genes, but also the information of the group of genes that is supposed to form a
functional unit, such as a regulatory unit in the metabolic pathway or a molecular unit
of assembly. Thus, the ortholog group tables represent a library of 'network motifs' or
conserved local network patterns that are related to functional meanings. They are
maintained manually with the aid of network comparison tools in KEGG.

Molecular catalogs

The molecular catalogs are to be used for representing functional and structural
classifications of proteins, RNAs, other biological macromolecules, small chemical
compounds, and their assemblies. However, the current version of KEGG contains
only several tables, mostly for enzyme classifications.

Chemical compounds

The living cell contains a number of non-genetic compounds that are synthesized,
transported from outside, or simply carried over cell divisions. In order to represent a
complete network of molecular interactions, it is necessary to have a complete
catalog of compounds in the cell and possibly in the environment as well. The
COMPOUND section of the LIGAND database currently consists of over 5,000
chemical compounds, mostly metabolites with links to the location on the metabolic
pathways and to the enzymatic reactions involved. The COMPOUND entry also
contains the chemical structure that is entered manually using the ISIS system, and
the CAS number.

Enzymatic reactions

The information of enzymatic reactions and enzyme molecules is currently stored in
the ENZYME section of the LIGAND database. Work is in progress, however, to
organize the third REACTION section of the LIGAND database containing both
enzymatic and non-enzymatic reactions. A reaction between multi-substrates and
multi-products is decomposed into a set of binary relations or approximated by a
reaction between two major compounds. The reaction data are especially important
for computing possible chemical networks, from which possible gene (enzyme)
networks can also be obtained.

Molecular relations

The binary relations of successive enzymes are also extracted from the KEGG
metabolic pathway diagrams. They form a class of molecular relation data in KEGG.
Another important class of molecular relation is the protein-protein interactions in
regulatory pathways such as in signal transduction, cell cycle, and developmental
pathways. These data are not yet well organized, except for a few attempts in BRITE

72

(Biomolecular Relation in Information Transmission and Expression) that
computerizes the interaction data from literature (see Table 1 for the URL).

Examples of Using KEGG

Navigation

It is recommended to try out the examples described here by opening the KEGG table
of contents page (www.genome.ad.jp/kegg/kegg2.html). First of all, this page is
organized to represent the network level information of biochemical pathways in the
upper portion and the molecular level information of genes and genomes in the lower
portion. The user may navigate KEGG resources as well as other integrated resources
in a top-down fashion starting from the pathway section or in a bottom-up fashion
starting from the gene catalog section. For example, starting from an overall map of
the metabolic pathways, the user can zoom into carbohydrate metabolism, and then to
citrate cycle (TCA cycle). This is the network level where inter-relationships of
molecules are represented in the KEGG pathway diagram as shown in Figure 3. The
box is an enzyme with EC number inside, and the circle is a compound with its name
written aside. Both are clickable to go down to the molecular level and then to
navigate through a number of molecular biology databases.

Figure 3: The cytrate cycle in KEGG.

At the upper-left corner of each pathway diagram, there is a pop-up menu with
which the user can go to organism-specific pathways and see the differences. For
example, E. coli has a complete set of genes that forms the TCA cycle, but H.

73

influenzae lacks the upper portion of the cycle shown in Figure 3. Interestingly, H.
pylori is complementary, having only the upper portion and lacking the lower
portion. Furthermore, by examining the KEGG ortholog group table, these two
portions turn out to be coded in different operons whenever the operon structure is
observed. These observations suggest that the TCA cycle is actually formed by two
sets of pathways that are under different regulatory control mechanisms.

Network comparison

The four types of networks (Table 2) can be compared by using the search
capabilities of KEGG (Table 4). For example, the genome-pathway comparison is
done as follows. Starting from the genome map of a given organism, the user displays
the area of interest in the enlarged window and asks where in the known biochemical
pathways the genes in the window function. The query can be done by simply
clicking on the button marked PATHWAY. A typical result would be a gene cluster
in the genome forming a functional unit in the biochemical pathway; namely, the
genes in the window code for a set of proteins in successive steps of, say, amino acid
biosynthesis.

Another example of network comparison invlolves a hierarchy versus biochemical
pathways. For example, in the KEGG table of contents page, select the hierarchical
classification (molecular catalog) of enzymes by SCOP 3D folds. By opening the
third-level data for beta/alpha (TIM)-barrel in the hierarchy, the user can search all
occurrences of TIM-barrel proteins against the known metabolic pathways. This is
done by clicking on "Pathway Search by EC" and choosing "Search against 3D
structures in PDB" to limit the search for only those enzymes with known structures.
One of the results of this query is Phenylalanine, tyrosine and tryptophan
biosynthesis, where the last steps of tryptophan biosynthesis are populated by TIM
barrel proteins, which suggests possible gene duplications in the evolution of
pathway formation [1].

Pathway reconstruction with reference

In the traditional similarity search of individual genes (or proteins) against
repositories of all known sequences, it is always problematic to determine an
appropriate level of sequence similarity that can be extended to functional similarity.
The prediction tools in KEGG incorporate an additional feature that is used for
interpretation of sequence similarity; namely, the requirement for reconstructing a
complete pathway or a complete functional unit from a set of genes or proteins. The
reference for reconstruction is the set of pathway diagrams, and the refined data set of
ortholog group tables for a limited, but increasing, number of functional units. For
example, by searching sequence similarities against the KEGG ortholog group table
for ABC transporters using a set of consecutive genes in the genome as a query (an
ABC transporter is often coded in an operon), a transporter can be reconstructed with
prediction of substrate specificity according to the subgrouping of the ortholog group
table.

74

The search can also be made against the KEGG pathway diagrams, which form a
much larger data set than the ortholog group tables. In this case the search has to be
made against a single reference organism, but the procedure is similar; the user
specifies a set of sequences as a query. When the EC numbers are preassigned to
enzyme genes in the genome, the user can match the set of EC numbers against the
KEGG reference metabolic pathways (not the organism-specific pathways). The
matched enzymes are marked by color, so that the connectivity and completeness of
the marked enzymes can be used to assess the correctness of functional assignment
(EC number assignment) in the gene catalog. The existence of a missing element
implies either the gene function assignment is wrong or the biochemical knowledge
of reaction pathways is incomplete [7].

Pathway reconstruction from binary relations

The prediction above is a homology modeling based on comparison against the well-
defined reference. Perhaps, the most challenging task in KEGG is to make
predictions even when the reference is missing or incomplete. In the case of the
metabolic pathways, if the reconstructed pathway contains a missing element and it is
not due to an error in the EC number assignment, then this implies that the reference
knowledge is incomplete; an alternative reaction pathway exists or an alternative
enzyme with wider specificity takes the place [7]. To investigate this possibility
KEGG provides a tool to compute from a given list of enzymes all possible pathways
between two compounds and allowing changes in specificity. In our representation,
because a list of enzymes is equivalent to a list of substrate-product binary relations,
the procedure involves deduction from binary relations, which is like combining
multiple links in LinkDB. Possible changes of substrate specificity can be
incorporated by considering the hierarchy of EC numbers; namely, allowing a group
of enzymes to be incorporated whenever any member of the group is identified in the
genome, which effectively increases the number of substrate-product relations. Figure
4 shows the procedure of computing chemical reaction paths in terms of the
deductive database.

75

Figure 4. KEGG as a deductive database for path computation.

Future Directions

Computing paths of reasoning

We have mentioned two specific examples of path computation problems: computing
multiple links in DBGET/LinkDB and computing chemical reaction pathways in
KEGG. This type of deduction from binary relations can further be extended to
include different types of relations that are summarized in Table 5.

Table 5. Different types of binary relations

While factual, similarity, and genomic relations are well computerized, the
majority of functional relations, such as pairs of interacting molecules and upstream-
downstream relationships in biochemical pathways, exist only in printed materials or
experts� brains. In BRITE we have collected a small set of molecular interaction data
from primary literature, which is extremely labor intensive and requires expert
knowledge. We are also working on to develop computational technologies to
automatically extract pairs of interacting molecules from the written text. However,
an ultimate solution for fully computerizing interaction data would be direct
submission from the authors.

76

Designing new systematic experiments

The current knowledge of metabolic pathways, especially on the intermediary
metabolism, is already well represented in KEGG. The next question is how to
organize divergent sets of regulatory pathways. We are collecting pathway data
mostly from review articles on various aspects of cellular functions, but the existing
literature is the result of the traditional reductionistic approach in molecular biology,
which probably represents only a fragmentary portion of actual regulatory pathways
in the cell. It is therefore necessary to design new systematic experiments, for
example, for protein-protein interactions by yeast two-hybrid systems and for gene-
gene interactions by observing gene expression profiles on microarrays. KEGG will
provide reference data sets and computational technologies to uncover underlying
gene regulatory networks in such experimental data.

Acknowledgments

The KEGG project has been supported by the Human Genome Program of the
Ministry of Education, Science, Sports and Culture in Japan.

References

1. Kanehisa, M. A database for post-genome analysis. Trends Genet. 13, 375-376 (1997).
2. Kanehisa, M. Linking databases and organisms: GenomeNet resources in Japan. Trends

Biochem Sci. 22,442-444 (1997).
3. Goto, S., Bono, H., Ogata, H., Fujibuchi, W., Nishioka, T., Sato, K., and Kanehisa, M.

Organizing and computing metabolic pathway data in terms of binary relations. Pacific
Symp. Biocomputing 2, 175-186 (1996).

4. Fujibuchi, W., Goto, S., Migimatsu, H., Uchiyama, I., Ogiwara, A., Akiyama, Y., and
Kanehisa, M. DBGET/LinkDB: an Integrated Database Retrieval System. Pacific Symp.
Biocomputing 3,683-694 (1997).

5. Goto, S., Nishioka, T., and Kanehisa, M. LIGAND: Chemical database for enzyme
reactions. Bioinformatics 14, in press (1998).

6. Riley, M. Functions of the gene products of Escherichia coli. Microbiol. Rev. 57, 862-952
(1993).

1. Bono, H., Ogata, H., Goto, S., and Kanehisa, M. Reconstruction of amino acid
biosynthesis pathways from the complete genome sequence. Genome Research 8, 203-
210 (1998)

6 OMIM: ONLINE MENDELIAN
INHERITANCE IN MAN

Alan F. Scott*, Joanna Amberger*, Brandon
Brylawski** and Victor A. McKusick*

* Center for Medical Genetics, Johns Hopkins University
School of Medicine, Baltimore, MD 21287

** National Center for Biotechnology Information, NLM-
NIH, Bethesda MD

Introduction

Mendelian Inheritance in Man (MIM) is a compendium of bibliographic material and
observations on inherited disorders and genes maintained by geneticists and
molecular biologists. Its online counterpart, OMIM, is freely available on the World
Wide Web (WWW). Unlike other databases that maintain primary sequence,
mapping, or reference material, OMIM provides authoritative free text overviews
about genetic disorders and gene loci that can be used by students, researchers, or
practitioners of clinical or molecular genetics. Curation of the database and editorial
decisions take place at the Johns Hopkins University School of Medicine.
Distribution of OMIM and software development are provided by the National
Center for Biotechnology Information at the National Library of Medicine.

Although
available only in print form until the 1980�s, it has been maintained on computer
since early in its development, largely as an aid to authoring, editing, and publication.
In 1987, MIM was made internationally available online as OMIM by the National
Library of Medicine, and the current web interface debuted at NCBI in late 1995.
MIM is organized by gene locus; however, its emphasis continues to be on content
with medical relevance. A detailed history of MIM, its organization, and editorial
policies are available in the 12th edition of the book [1] and on the web site
(http://www3 .ncbi.nlm.nih.gov/omim/).

MIM was begun by Dr. Victor A. McKusick in the early 1960�s.

Figure 1 illustrates the growth of the database in terms of number of entries
included in each of the editions of the book. It is currently estimated that this number

78

will plateau at 80,000 to 100,000 when all human genes are known and characterized
sufficiently to warrant inclusion.

Figure 1. Total number of entries
in the printed editions of
Mendelian Inheritance in Man.

As a comprehensive,
authoritative and timely

compendium of information in human genetics, OMIM is an important resource for
clinicians, teachers, and researchers. For clinicians, OMIM can be used as an aid in
differential diagnosis. Physicians and counselors can search the database using key
clinical features of a patient. As a teaching tool, OMIM provides students a quick
and simple way to find and review essential information about a given gene or
genetic disorder. A MEDLINE search for cystic fibrosis, for example, would yield
thousands of references. A genetics student would have a difficult time identifying
which are the most important. A search of OMIM, however, readily provides this
summary information. In research, OMIM serves as a starting point for clinical
researchers who want to identify information about genes that may be related to a
medical condition (e.g., what mutations are known for a gene and how they manifest
themselves) and for basic scientists a search of OMIM may help in identifying
disorders that may be caused by a gene that they have characterized.

Perhaps OMIM�s greatest utility is to serve as a simple gateway to related
information about genetics. Through its wealth of relevant links OMIM serves as an
easy access point to databases that contain more detailed information about sequence,
map information, references, etc. The ability to easily navigate between databases
whose structures and searching schemes are quite different has made OMIM
especially popular with users whose need for more detailed data is sporadic and who
may not be intimately familiar with other databases and how to use them.

Features of the OMIM database

OMIM entries have a standardized format which includes a number of features,
described below, that make it easy, even for the causal user, to obtain information.

79

The Entry

Each OMIM entry is assigned a unique number. Entries are prepared for each
distinct gene or genetic disorder for which sufficient information exists and are not
made for genes known only from expressed sequence tags (ESTs), pseudogenes,
genetic markers (e.g., �D� segments), or even complete cDNAs for which nothing is
known other than the sequence. Many disorders that are not yet characterized at the
level of the gene or even at any meaningful biochemical level are included as entries
if they show Mendelian inheritance. A major goal of OMIM is to help with the
discovery process whereby a gene sequence and a mapped phenotype can be
associated. When this occurs the separate entries may be merged.

OMIM authors do not wittingly create more than one entry for each gene locus.
The kinds of information that may be included in entries are the approved gene name
and symbol (obtained from the HUGO Nomenclature Committee), alternative names
and symbols in common use, information about the map location in man and mouse,
how it was cloned, information about the protein and DNA sequence such as the size
of the gene, the type of product made, what its known or inferred function might be,
where the gene is expressed, whether it is related to other similar genes in man or
other species and whether there are animal models. For entries where the gene
causes a disease, information about key allelic variants is included and clinical details
are presented.

Care is taken to assure that distinctive characteristics of given clinical disorders
are noted, including variations from the usual case. The information is intended as a
guide in diagnosis and management of the particular disorder. Clinical information,
given in succinct form, is supplemented by that provided in carefully selected
citations that accompany each entry.

Text entries are generally diachronic, meaning that they are added to in
chronological order, with the most recent material at the end. This is done, in part, to
minimize the effort of having to rewrite thousands of entries each time they are
amended and to reflect the historical progression of the knowledge about the locus.
Many of the larger entries, for which there is a wealth of information, have been
restructured into topical sections. These topics comprise the Table of Contents (see
Fig. 2) at the top of the entry. For these entries, new information is added in
chronological order into the appropriate section.

User Comments

OMIM encourages users to offer comments about existing entries and suggestions for
improvements or additions of materials. Comments relating to scientific and editorial
content are forwarded by NCBI to the editorial staff at Johns Hopkins.

Clinical Synopses

80

Clinical synopses are available for entries that describe a medical phenotype. These
single word listings of signs, symptoms, laboratory tests, genetic peculiarities, etc. are
written using a controlled vocabulary and provide a quick survey of features of a
given disorder. The synopses are particularly useful in creating lists for differential
diagnosis.

Allelic Variants

A valuable feature of OMIM are its lists of noteworthy �allelic variants� for a given
gene. These are most often disease causing mutations, but can also include common
polymorphisms that do not produce disease. In each case, the variants are inherited
and are distinct from somatic mutations, as seen in cancer, which are generally not
included. OMIM does not try to exhaustively document all known variants at a
locus, but rather focuses on those that are relatively common, represent a novel
mechanism of mutation, or have historic significance.

The OMIM Gene Map

The OMIM gene map is maintained as a convenience to users and focuses on the
�morbid map,� i.e., the mapping of disorders. It contains information on
chromosomal location, based on linkage and other mapping methods, obtained from
the literature cited in the entry. In chromosome-by-chromosome tabular form, the
OMIM synopsis of the human gene map gives, for each gene, the chromosomal
location, gene symbol, method(s) of mapping, and disorder(s) related to the specific
gene. For these mapped disorders, it also indicates whether specific mutations have
been identified. The OMIM gene map is not the official map curated by the genetics
mapping community and lacks the detail found in maps maintained by GDB and
NCBI which are available as links.

Citations

References are highlighted in the text and, if they are cited in PubMed (MEDLINE),
the PubMed ID linked to the abstract is listed after the reference. The PubMed links
are generated nightly at the time when the database is rebuilt. References are
particularly important in OMIM since they are also used to generate links to other
databases, including GenBank.

Edit history and credits

When changes are made to an entry by the OMIM editing staff, they are documented
in the EDIT HISTORY field with the date and name of the person who made the
changes. The CREATION DATE field lists the date that the entry was created and
the name of the person who created it. Authors who contribute significantly to the
updating or editing of an entry and given credit in the CONTRIBUTORS field.

Searching OMIM

81

Searching OMIM is as simple as typing in the words of interest. In addition, there
are a number of ways to restrict a search (i.e., Boolean operators and field
restriction). Entries are retrieved in the order of the number of occurrences of the
word in the text. The entries that are retrieved are ranked in order of the number of
times the search terms occur in the entry and where it occurs. For example, terms
that appear in the title are given greater weight than those occurring in the text or
references.

Neighboring

A key new feature of OMIM is the neighboring feature which allows users to perform
MEDLINE searches using keywords selected from the text of the preceding
paragraph. Each paragraph in the text of an OMIM entry is processed against the
entire MEDLINE set of citations using the NEIGHBOR algorithm developed at
NCBI. NEIGHBOR finds the MEDLINE articles that seem most closely related to
the OMIM paragraph and links them to the paragraph on the OMIM entry�s WWW
page. This feature permits the user to find MEDLINE references that are germane to
his or her specific area of interest in addition to the references in the OMIM entry
itself. NEIGHBOR searches are performed against the current literature for the
entire OMIM database on a regular basis, thereby assuring that the links from any
given entry are up-to-date.

External Links

With the migration of OMIM to the WWW and the proliferation of genetic databases
it has been possible to greatly increase the utility of OMIM by providing links to
other resources. Among these, as shown in Fig. 1, are links to Entrez, including
PubMed, protein and nucleic acid databases, Unigene, the Human Gene Mutation
Database, the Genome Database, locus specific mutation databases (such as the CF
and PAH Mutation Databases), and the Coriell database of cell lines and probes.

Update log

An update log is available from the home page that takes users to a list of entries that
have been changed. The list is arranged by the month and within the month by day.
New entries are separated from updated entries; this is particularly helpful for users
who only want to browse the database for new entries.

Allied Resources

The home page of OMIM lists a number of allied resources that are distinguished
from the external links found in the entries. Paramount among these is the NCBI
Entrez MEDLINE and GenBank retrieval system. Resources particularly useful for
comparative studies are the databases of the Jackson Laboratory at Bar Harbor,
which maintains mouse locus information, the Online Mendelian Inheritance in
Animals, and the Seldin/Debry Human/Mouse Homology Map which graphically

82

illustrates corresponding mouse and human homologs and regions of syntenic
homology.

Figure 2: The Cystic Fibrosis entry illustrates several features of the OMlM database.
At the top of the page are buttons that allow the user to perform another search,
return to the home page or make comments about the entry. The OMlM number is
shown along with the approved gene name and symbol. Next are listed alternative
names and symbols. The Table of Contents, a feature of the longer entries, takes
users to specific regions of the text. Where available, links to other resources are
presented. Next, the cytological gene map position is given followed by an
explanation of the neighboring feature button. MEDLINE references, including
abstracts, are available through the PubMed ID link associated with most references.

83

How OMIM is Curated

OMIM is maintained by a small team of science writers and editorial assistants. The
OMIM director oversees the staff and is aided by deputy scientific directors for
�genes� and �phenotypes� who help with the selection of articles from the literature
that warrant inclusion. Twelve Subject Author-Editors (SAEs) also help with
reviewing the literature and checking entries in their areas of expertise. Genetics
graduate students and fellows are employed periodically to review entries and note
any obvious factual errors. OMIM periodically invites experts on a given disorder to
review and reorganize entries. Only the on-site editorial assistants have privileges to
modify the database. This is done to assure, as much as possible, that only people
trained in the OMIM authoring software can make direct changes.

OMIM is maintained and edited in a simple text format called OMIM Authoring
Format (OAF). OAF is designed to be editable in any text editor and contains only
the minimal formatting necessary to permit the OMIM reading software to separate
an entry into fields for display and searching. In this way, the authors are not
dependent on any specialized software to manipulate the entries and can edit them in
a simple, natural way.

OMIM maintains agreements with several major scientific journals to obtain
articles a week or so prior to publication. During this time, important, embargoed
articles are authored on and entered into the database to be released on the date of
publication. In the past year, the database has averaged about 43 new entries and 540
changes in existing entries per month. OMIM does not attempt to be an exhaustive
review of the literature. Not only would this be an impossible task given the
enormous volume of the world�s genetics literature, but it would defeat the useful
winnowing process that attempts to select �key� information. Also, the
�neighboring� feature of OMIM easily allows the use of the text of a preceding
paragraph to search MEDLINE for related articles.

The primary source material for OMIM is the published literature. The director,
the deputy directors and the subject author editors review several leading journals
that publish major articles in human and molecular genetics. In addition, the director
and scientific directors scan the tables of contents of dozens of additional journals for
article titles indicating that they may contain information on a new gene or important
information to add to an existing gene entry. In the latter case, the articles are
photocopied and reviewed as follows. First, a search of OMIM is made to assure that
the material is not already entered and whether the new reference constitutes an
�add� to an existing entry or warrants a new entry. When DNA or protein sequence
is included in a paper, the sequence is compared to GenBank using the NCBI blast
service [2]. Based on the results of that search, additional papers may be identified
that have reported the same sequence, often using a different name. If an approved
symbol is not available in GDB then information about the gene is submitted to the
HUGO Nomenclature Committee and a request for an approved gene symbol and
name is made. The latter are then added to the OMIM entry. The journal article or
multiple related articles, supporting sequence comparisons (i.e., blast results) and

84

any comments or supporting material are forwarded to a science writer for authoring.
OMIM science writers are typically PhDs or MDs with training in genetics. They
read the articles and abstract the salient points in the paper. Importantly, the science
writers do not simply paraphrase the abstract, but instead add information from the
introduction and discussion sections of the citation that attempt to put the work in
context and provide sufficient background that a reader can understand the
significance of the work.

The Future of OMIM

Perhaps the best measure of a database is how often people use it. At the end of
1995 OMIM received about 4,000 user queries per week. By the middle of 1997,
OMIM received over 20,000 searches per week (2,200-2,400 unique users per day).
Unlike other databases whose growth will diminish as the human genomic sequence
is completed and the map locations of all genes are known with precision, OMIM is
likely to continue to grow at an expanded rate. The reason for this is that the windfall
of sequence will certainly identify tens of thousands of new genes that will become
the fodder for scientists world-wide. As the community reports information about the
function and medical significance of these sequences there will be an on-going need
to supplement OMIM with that knowledge.

In the near term, OMIM will continue to strengthen its ties to other databases so
that there will be a better correspondence of information from one to another. In
particular, OMIM will work closely with the HUGO Nomenclature Committee to be
certain that approved symbols and gene names are maintained more closely. OMIM
will also work with Unigene to assure that all OMIM entries are represented in the
Unigene database and that well documented genes from Unigene are included in
OMIM. A challenge to OMIM will be to maintain standards of authoritativeness,
thoroughness and timeliness as it deals with the increasing torrent of new genetic
discoveries. Ultimately we hope that OMIM will be seen as a Rosetta stone for the
genetics community allowing scientists, students and clinicians to easily obtain
relevant information from all pertinent sources on all human genes.

References

1. McKusick, V.A. Mendelian Inheritance in Man. Catalogs of Human Genes and
Genetic Disorders. Baltimore: Johns Hopkins University Press, 1997 (12th
edition).
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and D.J. Lipman, J. Mol. Biol.2.
215,403-10 (1990).

7 GDB: INTEGRATING GENOMIC
MAPS

Stanley Letovsky

Cereon Genomics, LLC; 45 Sydney St., Cambridge, MA
02139

Introduction

The Genome Database¹ (GDB) [1] is a public database of human genome mapping
data. The main classes of data in GDB are genomic maps, along with the objects
located on the maps, such as genes, clones and markers (STSs), and marker
polymorphisms. GDB does not contain human sequence data, though it does contain
links from its objects to entries in the sequence databases. GDB can be viewed as a
species-specific genome database for the human, so it attempted to play a role
analogous to that played by MGD for the mouse, flybase for drosophila, and ACEDB
for C.elegans.

GDB is implemented using a relational database management system with an
object-oriented layer on top, based on OPM [2]. The primary user interface is the
Worldwide Web, including a Java map viewer. Many of the Web interface
components are generated automatically from the object-oriented schema by the
Genera Web/database gateway [3]. The system supports direct community curation
of its contents by authorized users; there is also an electronic data submission format
for file-based submission.

In its earliest years GDB's representation of maps included a coordinate-based
representation for cytogenetic data, as well as a textual representation for other sorts
of mapping data. Both representations were limited in their ability to support
searches or graphic displays. Subsequently the representation of maps was
consolidated and generalized to cover the richer range of maps that were increasingly
being generated in the 90�s, including linkage, radiation hybrid and STS-content
maps. Query and display tools were implemented based on the newer representations
that allow selected portions of maps to be retrieved and graphically displayed.

Funded until recently by the US Department of Energy, National Institutes of¹

Health and Japan's Science and Technology Agency.

86

A common problem in the construction of databases of mapping information is
how to optimally align or integrate mapping data from different methods, such as
genetic or physical mapping, or different sources, such as radiation hybrid maps
produced by different labs or from different mapping panels. There main motivations
for aligning maps are to support database searches of chromosomal regions of
interest and to produce better graphic displays. Several approaches to these problems
have been explored and implemented within GDB; this article describes and critiques
those methods.

Map Querying

An important query for GDB is to find all loci in a region of interest, sometimes with
additional restrictions as to the type of locus, existence of polymorphisms, or
functional category. The region of interest might in principle be specified in any of
several ways, such as the region between two specified loci, or the neighborhood of a
specified locus for some number of units in each direction. GDB stores many maps of
many different types, and it is desirable to have such positional search across all
maps of a region simultaneously. Intuitively, we want the database to function as a
stack of aligned maps, and a query to cut a thick slice through that stack (see Figure
1). A central concern of this article is how to best align the maps for this purpose.

Figure 1 : Query cutting through a stack of aligned maps

The details of the relational implementation of overlap queries are worth pointing
out briefly. Each locus is considered to have a localization interval, consisting of a
minimum and a maximum coordinate². The query to retrieve stored intervals I
overlapping a query interval Q can be expressed intuitively as the negation of
nonoverlap - find intervals I which are not disjoint from Q. I can be disjoint from Q

² These follow naturally from binned maps, where the coordinates are those of the bin
boundaries; for cytogenetic maps they are the coordinates of the band boundaries,
and in general they are coordinates of backbone markers. Backbone or point-like
markers are represented by zero-width intervals. Distance-based linkages can be
converted to intervals by using a suitable multiplier of the standard error.

87

in one of two ways: by being wholly to the left of it, or wholly to the right. The query
is thus:

not(Imax < Qmin OR < Imin)

Qmax and Q max are constants in the query, whereas Imax and Imax are data columns.
Negation and disjunction (OR) operations can confuse relational query optimizers, so
queries written in this form will typically not execute efficiently. An equivalent query
which can usually be executed efficiently is:

Imax >=Qmin AND Q max >=Imin

This query is especially efficient if a two-column index is placed on (I min, I max).
This allows searches to be restricted to the region of interest Q; without that index
queries may scan from Qmin to the maximum end of the chromosome, and intersect
the results with the results of scanning from Qmax to the minimum end of the
chromosome, which means the entire chromosome is scanned for every query; this is
much slower.

Note also that the more restrictive query to find stored intervals I contained in
query interval Q has the form

which is efficient under the same indexing as the overlap query.

Linear Alignment

In order to search a set of aligned maps we must provide each locus with a coordinate
in a common coordinate system, which I will call a universal coordinate system. In
general each map may have its own coordinate system, involving different origins
and units (centiRays, centiMorgans, kilobases, order-only). To define universal
coordinates we choose some map as the standard map for each chromosome, and
align all other maps to that map. The choice of standard map is made by human
judgement, paying attention to criteria such as marker density, accuracy, and use of
markers shared by other maps.

Our first implementation of a universal coordinate system used linear alignments. For
each map of the chromosome a linear regression was performed on the coordinates of
the markers that the map had in common with the chosen standard map, using the
nonstandard map coordinates as the independent (X) variable and the standard map
as the dependent (Y) variable. Figure 2 shows an example; the outliers are due to
markers placed in very different positions on the two maps. The resulting regression
line (blue) is used to map the coordinates of all loci in the nonstandard map into the
universal coordinates, i.e., the coordinates of the standard map. Once universal
coordinates have been assigned to all map elements on all maps, searches against
these coordinates can retrieve loci regardless of what primary map they belong to.

Qmin <=Imin AND Imax <=Qmax

88

Figure 2: Whitehead Radiation Hybrid Map vs. Stanford RH Map of Chr.3

(The nonlinear relationship evident between the maps is somewhat
surprising; this is to be expected between linkage and physical maps because
recombination is inhibited near the centromeres and telomeres, resulting in a
compression of genetic distances in those areas and a relative expansion in the
chromosome arms, where most recombination takes place. In the figure both maps
are radiation hybrid maps, which might have been expected to be more linearly
correlated. The nonlinearity may be a function of the different radiation doses used to
create the panels the maps were based on, which affects the density of breakpoints. If
the centromere is nonrandomly retained in radiation hybrid cells, then the different
panels might experience different degrees of centromeric distortion. However these
are just guesses; to my knowledge this effect has not been well studied.)

Although linear transformation provides a practical solution to the map alignment
problem, it is by no means perfect. With any universal coordinate scheme a locus
which appears on several maps may be assigned slightly different universal
coordinates in each of them, and so will appear several times in several different
places in the universal coordinate space. Ideally these places should be close to each
other, unless the locus was incorrectly placed in one of the maps, or a locus
identification error was made during entry of the map into GDB. Figure 3 shows one
way to visualize this effect, which we call a dispersion plot: each x,y point represents
a locus having a universal coordinate x from one map, and y from another. (The same
pair of maps will also generate a point for this locus at y,x, so the plot is symmetric.)
In the ideal case where every locus ended up at a unique universal coordinate all the
points would fall along the line y=x. This distance of points from this line is a
measure of the variability in the assignment of universal coordinates, and the overall
thickness of the distribution intuitively represents how good the linear transformation
approach is.

89

Figure 3: Universal Coordinate Dispersion Plot of Chromosome 3

How important is this dispersion? Is it worth worrying about? When universal
coordinates are used to support queries of the content of a region, dispersion can
cause both false negative and false positive errors in the results, i.e., they can fail to
retrieve the appropriate parts of some maps and retrieve inappropriate parts of others
(see Figure 4). In figure 3 the dispersion appears to be on the order of about 5% of
the chromosome length; intuitively that means that at resolutions finer than this the
alignments are not reliable.

Figure 4: Query region does not find completely corresponding regions of maps due
to nonlinear alignment

One surprising aspect of dispersion is that there is no dispersion associated with
points that occur on only one map, because a single regression line transforms them
to a unique universal coordinate. It happens that cytogenetic band boundaries occur
only on the cytogenetic maps, so they get assigned a single unique coordinate, as if
they were very precisely localized. A marker which has been used as a landmark on
many maps will by contrast be associated with a cloud of points in universal
coordinates, suggesting that it has a fuzzy localization, whereas in fact we have much
more information about its position than we do about something like a band
boundary. When cytogenetic bands are used to define the region of interest for a
positional query, this spurious accuracy in their universal coordinates can give
anomalous results: regions of non-cytogenetic maps which are known to be located in
a given band on the cytogenetic map may not be retrieved by a universal coordinate

90

query on that band. As the maps in GDB increasingly come to span multiple levels of
resolution all the way down to sequence features, errors such as these become more
serious.

Nonlinear Alignment

There are a number of reasons why points in the dispersion plot do not fall on the line
y=x. These can include measurement error in mapping, mistakes made in mapping or
data entry, as in the outliers in figure 2, which reflect dramatic disagreements
between two maps as to the position of a locus. More importantly, distances in one
map may have a nonlinear relationship to distances in another. For example, genetic
and physical distances typically have a non-linear relationship because recombination
occurs more frequently near the middle of the chromosomal arms, causing a high
ratio of genetic to physical distance in those regions, but a low ratio in the
pericentromeric regions where recombination is inhibited. This nonlinear relationship
between different types of map distances means that the regression line will be a
more accurate transformation in some regions than in others.

One solution to the problem of nonlinearity is to use a nonlinear transformation
function which warps the maps into better correspondence. The best transformation
function would be the curve defined by the common markers, which we can
approximate by a piece-wise linear function. However the transformation must be
monotonic (nondecreasing) if it is to preserve marker orders when transforming a
map into universal coordinates, and we have seen how order discrepancies between
maps can introduce outliers in the plots. To remove these we select a maximal subset
of the common markers that are order-consistent between the two maps. Such a
subset is called a longest monotonic chain. A piecewise-linear function is then
defined over that set of points. Figure 5 shows the dispersion for a set of maps
aligned with the longest chain method as compared with linear regression. The
reduction in dispersion relative to the linear transformation is apparent.

Special care must be taken at the ends of maps, where there may be loci that occur
beyond the ends of the piecewise linear function. The function must be extrapolated
to handle such points. Two obvious solutions are to use the regression line slope or
the slope of the last linear segment; we have found the former to be more robust.

Although longest chain piecewise linear alignment is clearly an improvement over
linear regression, it can probably be further improved on. The algorithm chooses
arbitrarily among equally long longest chains; it should be possible to somehow
average among all possible longest chains. Also it might be worth considering other
measures of length besides number of points, such as distance covered, or composite
measures that include both number of points and distance spanned

91

Figure 5: Dispersion of linear (left) and longest chain (right) universal coordinates for
chromosome 1

Measuring Dispersion

Dispersion can be measured in a number of ways, of which the most straightforward
is perhaps the standard deviation of the distance of all the points from the y=x line;
this number can be interpreted as a distance error in universal coordinates. A
somewhat better measurement would compare each universal coordinate for a locus
with the standard-error-weighted average of the universal coordinates for that locus;
this would have the desirable property that a locus with N coordinates would
contribute only N values to the overall dispersion; the pairwise comparisons shown
here generate N*(N-1)/2 values, which means that common loci are overrepresented
in the results. Dispersion measures can be computed for individual maps, by
comparing the universal coordinates of loci on that map with those from all the other
maps; the resulting map dispersion number can be used to rank maps by their overall
concordance with other maps, and can also be interpreted as a standard error for the
universal coordinates of that map.
Similarly, dispersion can be computed on a per-locus basis to identify highly
discrepant loci. The scripts which compute universal coordinates for GDB generate
HTML reports showing map-dispersion (figure 6) and the most discrepant loci
(figure 7)

92

Figure 6: Maps ordered by increasing dispersion measure

Figure 7: Loci with large dispersion

The use of dispersion as a metric to evaluate the quality of alignments suggests the
possibility of using dispersion minimization to drive the alignments. A simple way to
do this would be to choose a fixed set of control points for each nonstandard map
(the �s in figure 8) and choose that determine a piecewise-linear transformationyt 'sxi

93

which minimizes dispersion. The optimization problem is linear and has a small
number of variables, so it should be easily solvable.

y = 4.433*x + -177.1 ; r=0.97

Figure 8: Direct minimization of dispersion

Map Integration

Another approach to the query problem is to integrate the maps, and use coordinates
in the integrated map as universal coordinates for querying purposes. What does
integration mean? Don't the universal coordinate procedures described above
perform a sort of integration, by placing all the elements of all the maps in a common
framework? Yes and no. The universal coordinate approach can be viewed as
producing a universal map which has one element for each map element in each of
the source maps. A marker that appears in several maps will be associated with
multiple map elements in such a universal map. An integrated map, by contrast,
would put every marker in just one position, no mater how many primary maps it
occurred in. That position should have an associated window of uncertainty, and
should be influenced by the marker's positions in the different source maps. The
uncertainty should be truly reflective of the available information on the marker's
position. Integration should ideally also eliminate the need to arbitrarily select one
map as a standard, which introduces biases. The coordinates and uncertainties
resulting from a meaningful integration along these lines might yield significantly
improved query behavior over universal coordinates. See [4,5] for work in this area.
Unfortunately, meangful integrated maps are considerably more difficult to construct
than alignments; a key issue is how to combine order data from multiple maps and
preserve it in the integrated map. There are also a number of technical difficulties
associated with defining a meaningful notion of an uncertainty window for a locus on
an integrated map. Mapping uncertainty is normally associated with pairwise
distances, yet for a map to be efficiently searchable it must use coordinates rather
than intermarker distances. The standard error of a coordinate assignment as not a
well defined concept, and yet some such notion is necessary to implement an
appropriately fuzzy search. This is an important area for future work that affects the

94

positional querying semantics, the integration algorithm, and the graphic display of
integrated maps.

Map Display

The MapView 2.0 Java™ applet currently used in GDB can display multiple maps
with alignment lines between common markers (figure 9).

Figure 9: MapView 2.0 shows the same region in several maps.

One problem with such displays is that the number of maps keeps increasing.
After doing a positional query the user is currently asked to select which of the maps
intersecting the query region they wish to see in the viewer. That list keeps getting
longer, and the user often has no intelligent basis for making the choice. We would
like to provide a robust default for this choice: an integrated map whose content
synthesizes that of all the other maps.

Integrated maps can be constructed based on piecewise-linear alignments. To
produce these maps the various universal coordinate localizations for a locus must be
combined into a single interval; at GDB we use a modified form of unioning which
throws out poor localizations that are consistent with tighter ones. The resulting
integrated or comprehensive map (figure 10) can be useful for certain purposes, but
must be treated with some skepticism. Anyone wanting detailed order information in
particular is well advised to look at the original maps, not the integrated one.

95

Figure 10: A piece of an "comprehensive map" derived from aligning maps and
collapsing multiple localizations by unioning. The width of the localization intervals
and the apparent orders cannot be trusted at high resolutions.

As long as precision is not crucial, comprehensive map coordinates can be useful
for graphically displaying the results of locus queries, as shown in the following
figures..

Figure 11 : graphic display of results of a query for polymorphic markers in a region of
interest

96

Figure 12: Comprehensive map of genes on chromosome 19

Figure 13: Comprehensive map of EST's expressed in fetal brain, showing results on
multiple chromosomes

Discussion

Static alignment of multiple maps of a genome can be useful to support queries by
region of interest. Efficient implementation of such queries in relational databases is
possible. Nonlinear alignments are significantly better than linear ones for querying
purposes. Integrated maps derived from nonlinear alignments can be useful for
visualization if used with appropriate caution.

It is worth noting that other approaches to this problem are possible. Dynamic
alignment aligns maps at query time about the markers of interest; this strategy is
used by Chromoscope in the Genomes Division at NCBI [6]. The resulting

97

alignments are better for the specific marker of interest; however it is not clear that
this strategy is applicable to the problem of querying a relational database for a
region of interest.

An important area for future work is the extension of these ideas to comparative
maps across multiple species. Within GDB some initial work was done aligning
mouse maps to human maps within the universal coordinate framework: the mouse
maps were rearranged to optimize the alignment with human. This allowed mouse
genes to be retrieved in human regions of interest, which can be a useful mechanism
for suggesting candidate gene locations. An issue for the future is the design of a
more general system that allows mapping information to flow across species.

References

1. GDB, www.gdb.org.
2. Markowitz et al, OPM: see article in this collection.
3. Letovsky, S. Genera: http://cgsc.biology.yale.edu/genera.
4. Letovsky, S. and Berlyn, M. CPROP: A Rule-Based Program for Constructing

Genetic Maps. Genomics 12:3 pp.435-446.
5. Collins A., Frezal J., Teague J. & Morton NE. (1996). A metric map of

humans:23,500 loci in 850 bands. Proc. Natl. Acad. See also LDB,
http://cedar.genetics.soton.ac.uk/public html.

6. Entrez Genomes Division, http://www.ncbi.nlm.nih.gov/Entrez/Genome/org.htm

This page intentionally left blank.

8 HGMD: THE HUMAN GENE
MUTATION DATABASE

Michael Krawczak, Edward V. Ball, Peter
Stenson and David N. Cooper

Institute of Medical Genetics, University of Wales College
of Medicine

Heath Park, Cardiff CF4 4XN, UK
Phone: (+44) 1222 744062 (DNC) or (+44) 1222 744957

(MK)
Fax: (+44) 1222 747603

Email: cooperdn @ cardiff.ac.uk or krawczak @ cardiff.ac.uk

Summary

The Human Gene Mutation Database (HGMD) represents a comprehensive core
collection of data on published germline mutations in nuclear genes underlying
human inherited disease. By June 1998, the database contained in excess of 13,500
different lesions in a total of 766 different genes, with new entries currently
accumulating at a rate of over 2,500 per annum. Although originally established for
the scientific study of mutational mechanisms in human genes, HGMD has acquired a
much broader utility to researchers, physicians and genetic counsellors so that it was
made publicly available via the internet at http://uwcm.ac.uk/uwcm/mg/hgmd0.html
in April 1996. Mutation data in HGMD are accessible on the basis of every gene
being allocated one webpage per mutation type, if data of that type are present.
Meaningful integration with phenotypic, structural and mapping information has been
accomplished through bi-directional links between HGMD and both the Genome
Database (GDB) and Online Mendelian Inheritance in Man (OMIM), Baltimore,
USA. Hypertext links have also been established to Medline abstracts through
Entrez, and to a collection of 584 reference cDNA sequences used for data checking.
Being both comprehensive and fully integrated into the existing bioinformatics
structures relevant to human genetics, HGMD has established itself as the central
core database of inherited human gene mutations.

100

Introduction

The Human Gene Mutation Database (HGMD), maintained at the Institute of
Medical Genetics in Cardiff, represents a comprehensive core collection of data on
germline mutations underlying human inherited disease. Thus, HGMD comprises
published single base-pair substitutions in coding, regulatory and splicing-relevant
regions of human nuclear genes as well as deletions, duplications, insertions, repeat
expansions and “indels”, plus a number of complex gene alterations and
rearrangements not covered by the above categories. Somatic gene mutations and
mitochondrial genome mutations are not included.

The curators of HGMD have adopted a policy of entering each mutation only once
in order to avoid confusion between recurrent and identical-by-descent lesions.
Reliable discrimination between these two alternatives would require information
available only for a very small proportion of known lesions. Therefore, although data
on the regional, ethnic and haplotype context of mutations would be extremely useful
in terms of epidemiological and population genetics research, any unselective
accumulation of literature reports would have resulted in an inflation of references
with little immediate scientific use.

Although originally established for the scientific study of mutational mechanisms
in human genes (1), HGMD has acquired a much broader utility in that it provides
information of practical importance to researchers in human molecular genetics,
physicians interested in a particular inherited condition in a given patient or family,
and genetic counsellors. In view of its potential usefulness, the curators of HGMD
made the database publicly available (2) through the WorldWideWeb in April 1996.

101

Data coverage and structure

By June 1998, HGMD contained over 13600 different lesions in a total of 766
different genes (Table 1). Entries are currently accumulating at a rate of over 2,500
per annum. Coverage is limited to original published reports although some data are
taken from “Mutation Updates” or review articles. Mutations reported only in
abstract form are not generally included. Data acquisition for HGMD has been
accomplished by a combination of manual and computerised search procedures,
scanning in excess of 250 journals on a weeklylmonthly basis.

Table 1. Number of HGMD entries by mutation type (June 1998)

Mutation Type No. of entries

Single base-pair substitutions, missense/nonsense 8495

Single base-pair substitutions, splicing 1308

Single base-pair substitutions, regulatory 118

Small deletions (<20bp) 2245

Small insertions (<20bp) 807

Small indels (<20bp) 106

Repeat expansions 16

Gross deletions (>20bp) 370

Gross insertions and duplications (>20bp) 81

Complex rearrangements including inversions 96

Total 13642

All HGMD entries comprise a reference to the first literature report of a mutation,
the associated disease state as specified in that report, the gene name, symbol (as
recommended by HUGO) and chromosomal location. In cases where a gene symbol
has not yet been made available owing to the recency of the cloning report, a
provisional symbol has been adopted which is denoted by lower-case letters. Single
base-pair substitutions in coding regions are presented in terms of a triplet change
with an additional flanking base included if the mutated base lies in either the first or
third position in the triplet. While substitutions causing regulatory abnormalities are
logged in with eight nucleotides flanking the site of mutation on both sides, no
flanking sequence has been included yet for substitutions leading to aberrant splicing.
Micro-deletions and micro-insertions (of less than 20 bp) are presented in terms of
the deleted/inserted bases in lower case plus (in upper case) 10 bp DNA sequence

102

flanking both ends of the lesion. Either the codon number or, in cases where a lesion
extends outwith the coding region of the gene in question, other positional
information, is provided e.g. 5’ UTR (5’ untranslated region) or E616 (denotes exon
6/intron 6 boundary). Codon numbering may in some cases display inconsistencies
owing to the common use of different numbering systems for the same protein. For
the majority of genes, however, residue numbering has been standardized with
respect to a generally accepted numbering system employing the appropriate
reference cDNA sequence. For gross deletions, gross insertions and complex
rearrangements, information regarding the nature and location of a lesion is logged in
narrative form because of the extremely variable quality of the original data reported.

Summary data on the frequencies of different types of amino acid substitutions,
the location of splicing relevant single base-pair substitutions and the sizes of micro-
deletions and insertions are presented in table form. Mutation maps of every gene
provide a graphical display of mutations within the coding regions so that the
distribution of such lesions can be assessed at a glance.

Data access

HGMD is accessible on the basis of every gene being allocated one webpage per
mutation type, if data of that type are present. Since HGMD is partly dependent upon
industrial funding and considerable editorial work is involved in data curation over
and above mere literature screening (e.g. to ensure the consistency of nucleotide
sequence information, amino acid residue numbering and gene symbol usage),
unsolved copyright problems have so far precluded HGMD from being downloadable
in its entirety. However, once the closer cooperation with publically funded
bioinformatics institutions currently envisaged has been put in place, unrestricted
access to the database will become possible. HGMD currently serves in excess of
200,000 search requests per annum.

Meaningful integration of the data with phenotypic, structural and mapping
information on human genes has been accomplished through bi-directional links
between HGMD and both the Genome Database (GDB) and Online Mendelian
Inheritance in Man (OMIM), Baltimore, USA. In addition, hypertext links have been
established from HGMD references to Medline abstracts through Entrez. Hypertext
links have also been set up to “reference cDNA sequences” (584 to date) which are
also used for data checking. “Genomic reference DNA sequences” are currently
being constructed which will provide data on exon-intron junctions and the location
(if known) of the transcriptional initiation sites.

The links to GDB and OMIM have enforced the standardisation of disease and
gene nomenclature in HGMD. Thus HGMD can be searched either by HUGO-
approved gene symbols, GDB accession numbers, or OMIM- compatible disease or
gene names. For genes for which Locus-Specific Mutation Databases are available on
the Internet, these databases (currently ~70) can be accessed either from the
corresponding gene-specific HGMD pages or via the Locus-Specific Mutation
Database page (3) .

103

Conclusions and Outlook

Being both comprehensive and fully integrated into the existing bioinformatics
structures relevant to human genetics, HGMD has established itself as the central
core database of inherited human gene mutations. Looking to the future, efforts will
be made to improve the provision of flanking sequence data, to increase the number
of cDNA and genomic reference sequences provided and to make the data collections
on gross gene lesions and disease-relevant polymorphisms fully comprehensive.

In order to improve the accuracy, efficiency and rapidity of mutation publication,
however, direct submission of mutation data to a central resource capable of (and
responsible for) checking the novelty and consistency of data is both necessary and
desirable. Although some Locus-Specific Databases have included mutations not
published anywhere in the literature, even the close integration of these facilities will
be inadequate to the task of meeting the demands likely to be made upon a central
data repository. A substantial proportion of published mutation data are derived from
genes in which only a handful of lesions have so far been characterized (Table 2);
such genes do not therefore warrant the establishment of a Locus-Specific Database.
In part for this reason, Locus-Specific Databases are currently accessible via the
Internet for only ~9% of genes referred to in HGMD. Although mutation data
associated with these genes should comprise ~48% mutations in HGMD (assuming
the Locus-Specific Databases to be sufficiently comprehensive), the obvious lack of
general coverage emphasizes the point that comprehensive collection of mutation
data can only be performed in generalised fashion. To this end, HGMD has instituted
a collaboration with Springer-Verlag GmbH, Heidelberg, to make online submission
and electronic publication of human gene mutation data possible (4). These data are
being published regularly by Springer’s journal Human Genetics in both electronic
and printed form. Once published, the data will be transmitted to Cardiff to be
deposited in HGMD.

Table 2. Number of HGMD entries per gene by mutation type (June 1998)

104

References

1.
2. http://www.uwcm.ac.uk/uwcm/mgJhgmd0.html
3. http://www.uwcm.ac.uk/uwcm/mg/oth_mut.html
4. http://link.springer.de/journals/humangen/mutation

Acknowledgments

The authors wish to thank SmithKline Beecham, Pfizer, the Genome Database and
the Deutsche Forschungsgemeinschaft for their financial support and Iain Fenton for
computer assistance.

Cooper DN, Krawczak M (1993) Human Gene Mutation. BIOS, Oxford.

9 SENSELAB: MODELING

NERVOUS SYSTEM
HETEROGENOUS DATA ON THE

Prakash Nadkarni¹, Jason Mirsky², Emmanouil
Skoufos¹,² Matthew Healy³, Michael Hines²,

Perry Miller¹ and Gordon Shepherd2

¹Center for Medical Informatics, Yale University School of
Medicine, New Haven, CT

²Department of Neurobiology, Yale University School of
Medicine, New Haven, CT

³Research Division, Bristol-Myers-Squibb Pharmaceutical
Corporation, Wallingford, CT

Introduction

Knowledge about the nervous systems (NS) of higher organisms is evolving rapidly,
and databases that store this information will become valuable research resources.
The growth of knowledge is occurring in multiple dimensions, with advances at the
molecular/sequence level matched by discoveries in gene / gene product influence
and interaction. The molecular/functional data must be correlated with corresponding
data at the gross anatomical or pharmacological level, such as
neurotransmitter/receptor distribution, or the locations where the axons of particular
neurons project.

This proliferation of knowledge poses interesting informatics challenges. During
the course of the SENSELAB project (1, 2), which has been funded through the
Human Brain Project (3)), our group has dealt with the problem of representing
several kinds of data, through creation of multiple, physically independent databases.
We briefly summarize this work to indicate the nature and scope of the data involved.

A Web-accessible database (ORDB) of olfactory receptor sequences. Both
amino acid and nucleotide sequences are represented, and some sequences have
associated 3-D structural information in PDB format.This work, previously
described in (4), was done by Matthew Healy, Michael Singer, Jason Smith and
Emmanouil Skoufos. The need for ORDB was suggested by Doron Lancet of the
Weizmann Institute, Israel.

106

A database of computational models of neuronal function, (ModelDB) (5)
that facilitates the creation and running of neuronal models over the Internet
through a Web interface. The initial work, using the GENESIS neuronal
simulator (6) was done by Bret Peterson. Subsequent work, described in (7) and
done primarily by Jason Mirsky and Michael Hines, permits the use of an
alternative simulator, NEURON (8).

NeuronDB (9), a database of neuronal types, with associated receptors,
neurotransmitters, canonical compartments, ion channels and relevant
Iiterature citations. Such data is multi-axial (multi-dimensional) and NeuronDB
permits a user to query the data from any axis (e.g., a receptor type), and return
associated information on other axes (e.g., channel type). This Web-accessible
system, primarily implemented by Jason Mirsky and Gordon Shepherd, mostly
contains data on neurons of the olfactory system.

OdorDB, a database of odor molecules and associated experimental results
and literature citations (10). Structural formulae (as graphics) are among the
data associated with each molecule, with links to NeuronDB, ORDB and NCBI's
PubMed.. This work has been done primarily by Emmanouil Skoufos and
Prakash Nadkarni.

Currently, these databases are implemented with different database engines. (E.g.,
NeuronDB and ModelDB use the Illustra Object-Relational Database engine.) The
databases communicate with each other, when necessary, through Web hyperlinks
(query strings passed through URLs to CGI scripts).

We are now considering tighter coupling of these systems. The most obvious way
to achieve this is to combine the data into a single physical database, while
preserving the look and feel of the existing Web front ends. Physical integration
significantly simplifies certain tasks such as creating queries that bridge the
(presently separate) components. One consideration for successful integration, is
whether the schema of the integrated system should be simply a merge of the
individual schemas or a complete redesign. While the former approach is
straightforward, the latter approach touches on several interesting informatics
research issues, which are the focus of this article.

The Challenge of Managing Highly Heterogenous Data

While the data in SENSELAB is varied, it currently falls short of the entire potential
spectrum of neuroinformatics data, and we expect eventually to incorporate many
more kinds of information. Here lies a challenge: as the variety of the data managed
by a system progresses, the object classes and the relationships (associations)
between them increase steadily in number. Thus, when a new class is introduced,
there is potentially an association with each existing class. In addition, some classes,
such as anatomical structures, may have self-associations (recursive associations).
Thus, the thalamus contains, among other structures, the ventrolateral nucleus, while
itself being a part of a higher-level structure, the diencephalon.

107

For the purposes of the rest of this article, we assume that the system is
implemented using an object-relational engine, such as Illustra/Informix Universal
Server or Oracle version 8. With a straightforward design approach, each class/entity
would be represented as a table, while associations between classes would be
represented as "bridge" tables with foreign keys referencing one or more entity
tables. Often subclasses might need to be derived from a parent class, to store
additional, specific information.

With highly heterogeneous data such as is typical of NS data, this approach
eventually yields a significant number of classes as well as a complex class hierarchy.
More important, the bridge tables can get potentially unmanageable because, with M
classes, there are potentially MC2 bridge tables for binary relationships alone
(ignoring the possibility of recursive relationships). We must therefore seriously
consider ways of simplifying the schema.

The Object Dictionary Approach

A well-known approach, which we term the Object Dictionary (OD) approach, solves
the problem partially. (This technique, we believe, was pioneered by Tom Slezak's
team in the course of the Lawrence Livermore chromosome 19 mapping project (11).
It was subsequently adopted in production systems such as version 5 of the Human
Genome Database (12), as well as in DNA Workbench, a package to manage
physical mapping data within a chromosomal region (13).) In the OD approach, all
classes within the system are children of a parent "Object" class. The Objects table
contains information on every "object" (class/subclass instance) within a system, with
each row typically containing at least the following information: a machine-generated
ID, object name and object class ID. (The last is a foreign key into a Classes table.)
The details of a particular object are found in a class-specific table whose structure is
specific to the object's class or subclass, and which is related one-to-one to the
Objects table.

One advantage of the OD approach is that, because all object names and
definitions are stored in one place, one can create supporting tables (e.g., synonym /
keyword tables) to build search tools that have some semblance of intelligence.
(Synonyms occur very commonly in NS data: the terms 5-HT, serotonin and 5-
hydroxy-tryptamine refer to the same neurotransmitter molecule.) It is unreasonable
to insist that most users of an NS database specify the class of object along with the
object name in a query, when the name is often unique enough. (For example,
"muscarinic" can only refer to a receptor class, and amacrine refers only to a class of
retinal neurons.) Only if the term specified by the user is ambiguous is it necessary
for the system to display all likely candidates, and force the user to select one.

The OD approach is particularly useful for managing binary associations. Instead
of numerous bridge tables for each pair of object classes, we have a single
Associations table with at least three columns: Object ID 1, Object ID 2, description
of relationship. (In an archival database that gathers information from multiple
sources, there is typically a fourth column, a citatiodreference.) Only a single

108

Associations table is needed because the class of any object referenced in the first
two columns can always be looked up in the Objects table. For retrieval efficiency in
circumstances where a relationship description can have an inverse, the row may be
duplicated with the values in the first two columns reversed. To cite a common
example in genomic data, a row asserting that object 123 is a sub-clone of object 65
(<123, 65, "sub-clone">) will have a row making the reciprocal assertion (<65, 123,
"parent clone">).

The Problem of N-ary Associations

With neuronal data, however, associations between objects are typically not binary
but N-ary (where N is greater than 1). For example, consider the following
information on the neurons of the nigrostriatal pathway (whose function is impaired
in Parkinsonism):

The information in the example above may be regarded as multi-axial, where
receptor, anatomical site, neuronal type etc. comprise the axes, and we must now
consider how to represent it within a database schema. First, note that it is not
advisable to represent the axes as attributes of a "Neuron" class. Such an approach
might have been permissible in a database with the primary focus on neurons.
However, in a database that stores information on a variety of objects, this approach
introduces an asymmetry by implicitly making neurons first-class entities and others
second-class. Each axis mentioned above refers to objects which, depending on the
perspective of particular users, may be as or more important than neuronal types.
Thus, some queries may not be directed at the Neuron class at all: e.g., a user may
wish to retrieve a list of anatomical locations where D2 receptors are found. Such

109

users might advocate creating a “Receptors” table, and storing this information with
the neuronal type as one of the fields instead.

Therefore, a better way to represent this information is as associations. One
method of representing multi-axial associations, widely deployed in data warehouse
design for business applications, is the “Star” Schema (14). In a star schema, a
central “Facts” table, which stores one or more quantitative columns plus several
foreign key columns, is related many-to-one to multiple “Dimension” (class) tables.
(The phrase “star” refers to the appearance of the schema diagram, with the many-to-
one links radiating out from a central facts table.) Each class table stores information
on entities in a single axis. This design has proved valuable in situations such as
analyzing sales information by territory, salesman, product, product category,
volume, and so on. For NS data, however, star schema design is unlikely to be usable
without considerable modification, for several reasons:

1. The axes describing neuronal data are not strictly orthogonal (i.e.
independent). For example, receptors and neurotransmitters are inter-related;
given knowledge of the receptor, a domain expert automatically knows the
transmitter involved (though the converse is not true).

The number of axes relevant to a particular fact is variable: some attributes may
not be known, and others may be irrelevant for certain instances of data.

The nature of axes is also unlikely to be static (i.e. unchanging) in a rapidly
evolving field. An axis that could be added to the above list, for example, is
expression during different phrases of embryonic life.

The same object class may appear in more than one axis. In the example, the
“Neuron” class appears in three different categories - Neurons, Efferents, and
Afferents.

2.

3.

4.

5. Certain axes may have multiple object instances. In the example, the
nigrostriate neurons receive inputs from multiple neurons and generate
outputs.for multiple neurons as well. For the NS, in fact, most of the axes are
likely to be multi-valued. (For example, a single neuron has multiple classes of
receptors on its surface, and many kinds of neurons are known to release more
than one neurochemical simultaneously.) In a normalized relational database
design, columns of a table must be atomic and not multi-valued, and so multi-
valued data must be factored out into separate tables.

Retrieval of data along some axes sometimes involves sophisticated algorithms
rather than simple table lookups. The most well known examples in biological
data are sequence similarity (determined by algorithms such as BLAST (15) and

6.

110

the information-retrieval metric of Wilbur (16), which measures similarity of two
bibliographic citations based on textual content. ¹

Within a single axis, entities may be inter-related through recursive relationships
of the parent-child type. This complicates the query process because of the need
to "explode"a query object instance, retrieving all its children prior to scanning
the association data. E.g., in the example above, the pars compacta is part of the
substantia nigra, which is part of the mid-brain. To process a query that asked for
anatomical locations of various receptors in the mid-brain, one would first have
to retrieve all "child" anatomical sites within the mid-brain and then search the
association data against this set of child sites.

A general representation of N-ary Associations

7.

The sub-schema we propose to handle the case of N-ary associations (where N, the
number of axes, varies) is shown in fig. 1. (In this figure, table names are
Bold/Underlined, while primary keys are in italics. Arrows point from a foreign key
to a primary key.) The Classes and Objects tables have been mentioned earlier in
connection with the Object Dictionary approach. The Facts table stores a unique
identifier, the Fact ID, and a textual narrative of the fact (for reasons described
shortly). There is a one-to-many link between the Facts table and a Citations table
(not shown in the figure).

While some systems, such as NCBI's Entrez, store pre-computed sequence and
citation similarity scores for efficiency, such pre-computation must be done each time
new sequences or citations are added to the database. Such pre-computation is
justifiable only if the primarily purpose of the database is to assist similarity
searching (as in Entrez).

¹

111

The Associations table describes the object instances linked to the fact, with one
row per object instance for the same fact ID. The Qualifier field is a descriptor from
a controlled-vocabulary table, that describes an aspect of an association. The set of
permissible qualifiers is determined by the class of a particular object instance.
Examples of qualifiers for neurons are "primary", "afferent" and "efferent".
Examples of functional effects are "excitatory", "inhibitory", "autoreceptor negative
feedback".

The example data would be represented in the Associations table as illustrated in
Table 1. (We assume a fact ID of 100 and, for simplicity, use the Object / Class /
Qualifier descriptions rather than IDS.)

Table 1 : Capturing information on Nigrostriatal Neurons

The Qualifier field can readily capture the semantics of an association in the case
of binary relationships. Thus, to record the assertion that the neurochemical
"substance P" is co-released as a modulator with the chemical serotonin (a
neurotransmitter), we would need two rows. One row would have the Object
ID/Qualifier values "serotonin" and "transmitter", the other would have "Substance
P" and "modulator". Reciprocal binary relationships are also readily captured without
the need to store the same fact reciprocally. Thus, to record the assertion, "structure
X is contained within structure Y”, one uses two rows with the Object/Qualifier pairs
<"X",."contained"> and <"Y","contains">.

112

However, for the arbitrary N-ary fact, the objects are linked to each other
conceptually like the nodes of a semantic network. The Qualifiers act somewhat like
the edges in the network, but they are not fully satisfactory for this purpose given the
current structure. Therefore, it is often hard to reconstruct the semantics of an N-ary
fact given the data in the Associations table alone. (Even in cases where it is not hard,
it generally requires several computational steps.) To avoid this (generally unneeded)
computation, the "Narrative" field in the Facts table stores an explicit textual
description of the N-ary fact for the user's perusal.

By an analogy with Information-Retrieval methods, the Associations table may be
regarded as an index (17) to the narrative text, for the purpose of rapid retrieval. The
only difference between the Association table and the inverted files created by free-
text indexing engines (e.g., for Web-searchable document collections) is that the
index-term vocabulary is more controlled with the Associations table. The similarity,
however, is that, in both cases, complex Boolean retrieval (e.g., list all neurons where
Dopamine has an inhibitory role) requires set operations, such as Union. Intersection,
and Difference, on subsets (projections/ selections) of the Associations table with
each other. Relational set operations are computationally less efficient than the
equivalent AND, OR and NOT operations that would have been needed with, say, a
classical Binary-Relationship table, but the plus feature is flexibility and a simple
structure. (For example, multiple object instances on a single axis do not need to be
managed through separate many-to-one related tables.) Also, in practice a significant
proportion of queries tend to be based on a single axis rather than multiple ones.
Such queries can be answered by locating the fact IDS corresponding to a particular
class instance, and then simply returning the narrative for those IDS.

Managing Hierarchical Associations

While the Associations table can manage arbitrary N-ary data, that does not mean
that every association in the database must be stored this way. Use of the
Associations table should be restricted to represent highly heterogeneous facts
(where both the number and the nature of the axes vary greatly). Facts best managed
in the orthodox fashion include parent-child relationships, a special category of
binary relationship. These are seen quite commonly in the NS, for example, with
receptors (which have subtypes), and anatomical structures (which have sub-
structures).

We have mentioned earlier the need to preprocess queries accessing hierarchical
data. This way, a query specified at a coarser level of granularity must also be able to
retrieve facts stored in the database at a finer level of granularity, without having to
store facts redundantly at multiple granularity levels. Standard transitive-closure
algorithms for this purpose have been well-researched for the "Bill of Materials
Problem" (18). Limited transitive-closure support will be provided in SQL-3 (19).

113

Managing the Object Class Hierarchy

The NS has many classes of data, and some of these classes form a natural hierarchy.
Consider, for example, molecules with a role in the NS. The smallest such molecules
are the neurotransmitters, odor molecules and "second messengers" such as cyclic
Adenosine Monophosphate. The neuromodulators such as the enkephalins
(composed of a small number of amino-acids) and neurohormones (e.g., endorphins)
are somewhat larger. At the macromolecular end, we have various protein molecules
such as enzymes, ion channels and receptor molecules, along with their
corresponding nucleotide sequence/s. All of these are sub-classes of the class
"molecule", and the nature of information to be recorded against each subclass
varies. Thus, simple structural formulas (as vector graphics) are useful for smaller
molecules, while the larger protein molecules need to have secondary or tertiary
structures recorded when available. For enzymes, one would like to know about the
reactions they catalyze.

Similarly, for anatomical structures, one can descend from gross anatomical
structures (e.g., the cerebellum), to sub-structures (such as nuclei), to individual
layers of cells and the neuronal cell types within a layer.

However, there are some practical problems in directly porting the object-oriented
inheritance paradigm to design of a schema for NS objects.

While the number of classes is large, many of them will have only a modest
number of actual object instances. (For example, even though different
information needs to be recorded on a neurotransmitter versus a neuromodulator,
the currently known neurotransmitters plus neuromodulators number less than a
hundred.) It may seem like overkill to create separate tables as part of a complex
hierarchy for such few instances, because the added design effort is not
sufficiently amortized in terms of the volume of the data that is better managed.

In the context of NS data, we are using the phrase "class" more loosely than,
say, Java programmers do. In programming parlance, a class refers to a
particular data structure as well as the permissible operations (member
functions, methods) that can be defined for that class. However, for most NS
"classes", one cannot really think of any applicable operations other than simple
input and output.

Simplifying Class Management through EAV Design

When the number of instances of a class is expected to be numerous enough in a
production schema, the standard Object Dictionary approach (with class-specific
tables holding object descriptions, as mentioned earlier) is adequate. When it is not,
we must consider alternative design approaches.

One approach that is popular for modeling highly heterogeneous data is the
Entity-Attribute-Value (EAV) approach. (Some authors substitute "Object" for
Entity.) Attribute-Value pairs as a means of describing an object were pioneered in

114

AI in the form of LISP association lists (20). Subsequently, they have been used for
applications as diverse as Clinical Data Repositories (21) and are the basis for the
structure of Web cookies (22) and the Microsoft Windows Registry, as well as
various tagged formats for data interchange, such as ASN.l (23). We have
implemented an EAV design in ACT/DB a production system for managing clinical
trials data (24).

Conceptually, in an EAV design, we have a table with three columns, Entity ID
(Object ID), Attribute (or Attribute ID) and the Value for the attribute. Thus, one
describes an object through several rows in a table, one row per Attribute-Value pair.
Thus, to record information about the enzyme "Cholinesterase" (object ID 250),
which destroys the neurotransmitter Acetylcholine by hydrolysis, one might have the
following rows:

<250, "Substrate", "Acetylcholine">
<250, "Action", "Hydrolysis">
<250, "lnhibited-by", "Organophosphorus compounds">
...

Attributes are analogous to fields in a conventional table. In the examples, all
values are strings. In practice, relational databases are strongly typed. Rather than
have a single EAV table (with the Values coerced into string form) it is often
advantage to segregating values into separate EAV tables based on their intrinsic
datatype, for the following reasons.

One can improve retrieval performance by creating an index on a combination of
the attribute and value fields, to permit queries based on the values of the
attribute. (Indexes on numeric fields stored in string form are essentially useless
because of a different collating order.)

One can create EAV tables to hold values that are long text (e.g., sequences, or
PDF data) or BLOB data (such as vector graphics or photographic images). The
ACT/DB system uses six EAV tables for integer, float, string, date, long text and
BLOB data.

The success of an EAV system depends critically on the supporting metadata. We
describe our metaschema in Figure 2.

115

In fig. 2, the Objects and Classes tables have been repeated from fig. 1. The
Classes table has an extra field, EAV_Flag, a Boolean that records whether the
implementation of this class is EAV (if true) or conventional (if false). EAV makes
sense only for heterogeneous data, and there is no reason why a homogenous class
with a large number of object instances should not be implemented conventionally.

For each class, a description of the applicable attributes is stored in the
Class_Attributes table. Each Attribute has a name, a caption (for display to end-
users as a label in a form) a data type, a serial number (that determines order of
presentation) and a description (documentation). For BLOB datatypes, the "Type
Details" field records the kind of data (e.g., mime-type) that an attribute represents,
to assist management by application software. The Class Attributes table not only
documents the class definition, but is actively consulted by the system for
construction of input screens and generation of formatted output..

The actual data for an object instance is stored in the EAV tables. (Only one of
these, a table for integers, is shown in the figure.) The table Class_Hierarchy
records the parent-child relationships between Class definitions (not class instances:
these are stored in an Object_Hierarchy table as described earlier). This table is
consulted when the user specifies a query based on a super-class that might
encompass sub-classes as well.

Limitations of the EAV model

The simplicity of EAV comes with a price, namely, a performance penalty. The
physical representation of a class is quite different from its logical view as seen by
the user. Assembling all the "columns" associated with a particular class object
involves consulting the Class Attributes table and then gathering data from the
appropriate EAV tables. More important, complex Boolean query of classes requires

116

set operations (as in the case of the general N-ary relationship structure described
earlier).

In brief, EAV is not panacea. In any production system, data will be stored in a
mixture of conventional or EAV forms. Also, the schema may mutate, with a
particular physical classes being switched, as generality and efficiency are traded off.
A production EAV system should endeavor to hide the EAV or non-EAV nature of
the class data from the user, so that it always appears conventionally structured. This
introduces complexity when querying the Class data. The user/programmer must be
shielded from having to remember how a class is physically represented, and a query
generator must be used to generate the appropriate SQL based on which class/es of
objects are specified in a complex query. (We have created a query generator for
patient data in a clinical trials database that works on a combination of conventional
and EAV data; this work is described in (25).).

Conclusions

Our proposed database schema for managing heterogeneous data is a significant
departure from conventional approaches. It is suitable only when the following
conditions hold:

The number of classes of entity is numerous, while the number of actual
instances in most classes is expected to be very modest.

The number (and nature) of the axes describing an arbitrary fact (as an N-ary
association) varies greatly.

We believe that nervous system data is an appropriate problem domain to test
such an approach.

References

1. Shepherd G, Mirsky JS, Healy MD, et al. The Human Brain Project:
Neuroinformatics tools for integrating, searching and modeling multidisciplinary
neuroscience data. Trends in Neurosciences (in press).

2. Shepherd GM, Healy MD, Singer MS, et al. Senselab: a project in
multidisciplinary, multilevel sensory integration. In: Huerta. SHKMF, ed.
Neuroinformatics: An Overview of the Human Brain Project,. Mahwah, NJ:
Lawrence Erlbaum Associates, Inc., 1997: 21-56.
Koslow S, Huerta Me. Neuroinformatics: An Overview of the Human Brain
Projects. Mahwah, NJ: Lawrence Erlbaum Associates, 1997.
Healy MD, Smith JE, Singer MS, et al. Olfactory Receptor Database (ORDB): A
resource for sharing and analyzing published and unpublished data. Chemical
Senses 1997;22:321-326.
Peterson B, Healy M, Nadkarni P, Miller P, GM. S. ModelDB: An environment
for running and storing computational models and their results applied to
neuroscience. J. Amer.Informatics Assoc 1996;3(6):389-398.
Bower JM, Beeman D. The Book of Genesis. New York: Springer-Verlag, 1995.

3.

4.

5.

6.

117

7. Mirsky JS, Nadkarni PM, Hines M, Healy MD, Miller PL, Shepherd GM. A
framework for informatics support of computer-based neuronal modeling:
imposing order in a complex domain. (in preparation).
Hines M. The NEURON simulation program. In: Skrzypek J, ed. Neural
Network Simulation Environments. Norwell, MA: Kluwer Academic Publishers,
1993:
Mirsky JS, Nadkarni PM, Healy MD, Miller PL, Shepherd GM. Database tools
for integrating neuronal data to facilitate construction of neuronal models.
Journal of Neuroscience Methods (in press).

10. Skoufos E, Nadkarni P, P M. Using an Entity-Attribute-Value Data Model to
Store Evolving Experimental Data from Biomedical Research. (in preparation).

11. Slezak T, Wagner M, Yeh M, et al. A Database System for Constructing,
Integrating, and Displaying Physical Maps of Chromosome 19. In: Hunter L,
Shriver BD, eds. Proceedings of the 28th Hawaii International Conference on
System Sciences. Wialea, Hawaii: IEEE Computer Society Press, Los Alamitos,

12. Fasman KH, Letovsky SI, Cottingham RW, Kingsbury DT. Improvements to the
GDB Human Genome Data Base. Nucl. Acids. Res. 1996;24(1):57-63.

13. Nadkarni PM, Cheung K-H, Castiglione C, Miller PL, Kidd KK. DNA
Workbench: A Database Package to Manage Regional Mapping. Journal of
Computational Biology 1996;3(2):3 19-329.

8.

9.

CA, 1995:14-23.

14. Kimball R. The Data Warehousing Toolkit. New York, NY: John Wiley, 1997.
15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment

Search Tool. J. Mol. Biol. 1990;215:403-410.
16. Wilbur WJ, Yang Y. An analysis of statistical term strength and its use in the

indexing and retrieval of molecular biology texts. Computers in Biology &
Medicine 1996;26(3) :209-222.

17. Salton G. Automatic Text Processing: the transfomation, analysis, and retrieval
of information by computer. Reading, MA: Addison-Wesley, 1989.

18. Goodman N. Bill of Materials in Relational Database. InfoDB 1990;5(1):2-13.
19. Melton J. (editor). ISO/IEC SQL Revision. ISO-ANSI Working Draft Database

Language SQL (SQL3). New York, NY: American National Standards Institute,
1992:

20. Winston PH. Artificial Intelligence. (2nd ed.) Reading, MA: Addison-Wesley,
1984.

21. Huff SM, Haug DJ, Stevens LE, Dupont CC, Pryor TA. HELP the next
generation: a new client-server architecture. Proc. 18th Symposium on Computer
Applications in Medical Care. Washington, D. C.: IEEE Computer Press, Los
Alamitos, CA, 1994:271-275.

22. Dwight J & Erwin M (eds). Special Edition: Using CGI. Indianapolis, IN: Que
Corporation, 1996.

23. Huff SM, Rocha RA, Solbrig HR, W BM, P SS, M S. Linking a Medical
Vocabulary to a Clinical Data Model using Abstract Syntax Notation 1. (in
press).

118

24. Nadkarni PM, Brandt C, Frawley S, et al. Managing attribute-value clinical trials
data using the ACT/DB client-server database system. Journal of the American
Medical Informatics Association 1998;5(2):139-151.

25. Nadkarni P, Brandt C. Data Extraction and Ad Hoc Query of an Entity-
Attribute-Value Database. Journal of the American Medical Informatics
Association in press.

10 THE MOUSE GENOME DATABASE
AND THE GENE EXPRESSION

DATABASE: GENOTYPETO
PHENOTYPE

Janan T. Eppig, Joel E. Richardson, Judith A.
Blake, Muriel T. Davisson, James A. Kadin,

and Martin Ringwald

The Jackson Laboratory, Bar Harbor, ME 04609

Introduction

Two important resources for mouse biological and genomic data and analysis exist,
and continue to expand at The Jackson Laboratory (U.S.A.). These resources, the
Mouse Genome Database (MGD) and the Gene Expression Database (GXD), have as
their long term goal the facilitation of research through access to integrated genomic
structural data, gene expression information, and phenotypic descriptions. The World
Wide Web (WWW) provides a method for easily navigating these integrated data
resources to address complex questions of biological importance (Figure 1).

The goals for the MGD and GXD resources are 1) to provide high quality,
elemental genomic data suitable for analysis and integration with other biological
data, 2) to develop software for data importation, analysis and display, and 3) to
develop easy-to-use flexible interfaces for access by the scientific community.
Emphasis is on acquisition of primary data, since these are most suitable for analysis
and combination with new data.

120

Figure 1. Mouse Genome Informatics Home Page. The Mouse Genome Informatics
World Wide Web site (http://www.informatics.jax.org) serves as an integrating point
of access for the Mouse Genome Database (MGD) and the Gene Expression
Database (GXD). This unifying WWW site provides users with seamless easy
access to information on the genetics and biology of the laboratory mouse.

Mouse Genome Database (MGD)

The Beginnings

The Mouse Genome Database developed as an outgrowth and extension of various
information resources, both paper and electronic, on the laboratory mouse. The
tradition of pre-publication and anecdotal information exchange in the mouse

121

genetics community fostered the early development of data compilations and
consensus map building.

Early compilations of mouse genetic data pre-date electronic databases. The first
gene description catalog for the mouse was published from The Jackson Laboratory
in 1941 by Dr. George Snell [1]. Dr. Margaret Green should be credited as the
developer of the first mouse genetics database when, in the 1950s, she began an
index card file system delineating published and personally communicated results of
experimental crosses. These formed the basis of early versions of a composite mouse
genetic linkage map [2-6]. Later, she also compiled descriptions of mutant and
polymorphic genes in the mouse, the centerpiece for the first edition of Genetic
Variants and Strains of the Laboratory Mouse [7] published in 1981. These gene
description data (later known as the Mouse Locus Catalog, MLC) were maintained as
a word-processing document.

In the 1980s, GBASE (Genomic Database of the Mouse), the first online resource
of mouse genomic information, was developed by Drs. Roderick and Davisson [8].
GBASE provided a single menu for user access to three independent data sets:
Locusbase, an Ingres database with a character cell interface, contained summarized
mapping data initially populated from Dr. Green’s cards; MATRIX, with a command-
line interface, contained strain-by-locus allele data; and MLC, with an IRX text
searching interface, contained synoptic descriptions of genes.

In 1989, the first incarnation of the Encyclopedia of the Mouse Genome
(Encyclopedia), a suite of software tools for viewing mouse genetic data, was
developed through the collaborative work of Drs. J.H. Nadeau, L.E. Mobraaten, and
J.T. Eppig [9]. This software provided intuitive, graphical user interfaces for
browsing genetic and cytogenetic maps, associated references, notes, and gene
descriptions. Its purpose was to provide simultaneous access to information derived
from different database sources and to provide means of querying those various
sources using a single computer mouse ‘click’. The Encyclopedia offered graphical
browsing of the Chromosome Committee reports for the mouse and the MIT Genome
Center SSLP maps under both UNIX and Macintosh operating systems.

Also during the 1980s, a number of domain specific databases were developed to
fill specific research needs and produce periodic publications. Among these were a
database containing primary haplotype mapping data to support linkage analysis and
map drawing programs, a database of probes, clones, and molecular markers
characterizing these new molecular reagents and associated RFLP data [c.ƒ., 10], and
a database of homology relationships between the mouse and other mammalian
species [11]. A compilation of the characteristics of 728 laboratory mouse strains
also was initiated during this period by synthesizing information from Cancer
Research listings about inbred strains dating back to 1952 [12].

In 1992, the Mouse Genome Database was initiated with NIH funding. Several
significant challenges came with MGD’s early development. Initial requirement
analysis, database design, and implementation had to be accomplished in a backdrop
of continued maintenance of the existing GBASE online resource. The pre-existing

122

databases had to be assimilated and, most importantly, integrated. Although this
legacy provided a foundation of data already in electronic form, the data existed on
different platforms, in different data management systems, and with fundamentally
different data paradigms and organizations. Further, these databases contained
varying amounts of overlapping information (e.g. , gene symbols, references),
requiring extensive programmatic and manual comparisons, and data reconciliation,
and data resolution.

The Present

In 1994, the first public release of MGD appeared on the WWW, although full
integration of all pre-existing systems was not yet complete [13-16]. Since then,
MGD has continued to evolve its underlying structure to maximize data integration,
as well as expand its data coverage. Data volume has grown continuously; many new
types of data sets have been added, and software developments have enhanced data
access and provided new tools for users to explore data relationships. MGD is
updated continuously with new data added daily. Software changes to the database
schema, enhancements to the user interface, and new analysis and display tools are
developed, tested and made available through our WWW site at 3-4 month intervals.

MGD includes structural genomic and phenotypic data about the mouse.
Currently, the data sets include:

Genetic marker characteristics: gene identification and
definition data; gene symbol, name, alleles,

Mapping data: experimentally generated genotypic data
nomenclature

from linkage crosses, recombinant inbred strain
experiments, and many other genetic mapping
techniques

Physical mapping data: probe vs. YAC hit/miss data;
STS content data

Comparative mapping data: for mouse and >50 other
mammalian species

comparative maps between mouse and other mamals
Molecular segments: clone, probes, primers, ESTs; their
characteristics and sequence links

Polymorphisms: visible, biochemical, RFLP or PCR
variant polymorphisms among strains
Phenotypic data : descriptions of genes, mutations, and
their function

Inbred strains: descriptions of inbred strains of mice,
including their unique quantitative characteristics.

Chromosome Committee reports: for viewing or
downloading (1995 to present).

: genetic, cytogenetic, physical maps ofmouse;_M_a_p__s

123

Data acquisition for MGD includes curation of the published literature, data
downloads from genome centers, and individual researcher data submissions and
annotations. Current data downloads are from a number of DNA mapping panel
providers, including the EUCIB (European Collaborative Interspecific Backcross)
panel, The Jackson Laboratory panel, and the NCI-Frederick Cancer Research and
Development Center panel; the Whitehead Institute MIT (mouse physical maps and
data); the I.M.A.G.E. (Integrated Molecular Analysis of Genomes and their
Expression) consortium (clones and libraries); and the Washington
University/Howard Hughes Medical Institute mouse EST project (EST data).

Figure 2. General WWW navigation of MGD. From the homepage, a topic area for
initial search is chosen, such as ‘Genes, Markers, and Phenotypes’. A search menu
for this topic area offers users several query forms and reports available. A query is
completed, a summary of the data sets fulfilling the criteria are returned, and the user
can then display the details for those data of interest. Hypertext links from the detail
pages link to additional information within MGD relevant to the data being viewed and
to external databases containing related data. Users can redirect their queries by
jumping to the search menu. A menu of query form buttons also is available as a
shortcut for more advanced users.

124

The WWW interface to MGD provides a variety of search options, with search
results presented as summaries, tabular details, or graphical displays. The users’
general navigation paradigm involves selecting a starting point for data query,
focusing the search by optionally filling in fields in a query form, and further
selecting specific data sets from those that satisfy the query. Detail data pages contain
hypertext links to other data in MGD or in external data resources, where relevant,
further enriching the information available to users (Figure 2). In addition, a number
of pre-generated reports are available for frequently requested large data lists,
including complete lists of genetic markers and complete tables of mouse-human and
mouse-rat gene homologies.

Maps are viewed in three formats: in the browser window (Web map) with
hypertext links to gene data; using the interactive Encyclopedia of the Mouse
Genome software tool; or as a publication quality map printed from a PostScript file.
Each genetic and comparative map is generated ‘on-the-fly’ based on user defined
parameters specifying data set, marker types or classifications, region to be
displayed, and whether to show homologous genes for another species. Cytogenetic
and physical maps currently are only available as Web maps.

MGD strives to provide the scientific community with the most up-to-date
information in an easy-to-use environment. Special requests for information not
easily retrieved through the WWW interface can be accessed directly using the public
SQL server. Alternatively, our User Support team will do specialized user queries on
request.

Gene Expression Database (GXD)

Differential gene expression generates complex spatio-temporal networks of gene
and protein interactions. The laboratory mouse, as an important animal model in the
study of human disease, is being used extensively in gene expression studies.
Emerging high throughput methods make it possible to analyze thousands of genes
simultaneously for expression in different tissues. Such experiments will provide
global expression profiles that can be used to guide focused expression studies using
more conventional expression assays, such as Northern and Western blot, RNA in
situ hybridization, and immunohistochemistry, to determine what transcripts and
proteins are produced by specific genes, and where and when these products are
expressed at the cellular level. The goal of the Gene Expression Database [17, 18] is
to support the storage and analysis of all these data, with the initial concentration
being mouse embryonic development.

In February 1996, the GXD Index, a view into the literature on mouse embryonic
gene expression, was made available through the WWW. This initial offering
provides users with a searchable index of research reports documenting data on
endogeneous gene expression during mouse development. For each scientific
publication, the Index includes the genes studied, the embryonic ages analyzed, and
the expression assays used. The GXD Index is integrated with MGD to foster a close
link between genotype, expression, and phenotype information.

125

In February 1998, a ‘cDNA and EST Expression’ search was added. Unlike the
MGD ‘Molecular Probes and Segments’ search, the GXD format enables better
searching on source data associated with expressed sequences. Particularly, tissue,
age, cell line, and library are prominent search fields.

In June 1998, the first large-scale expression data set was searchable through the
‘Gene Expression Data’ query form. These data, generated by T. Freeman (Sanger
Centre, U.K.) include RT-PCR assays for 517 genes in 45 mouse tissues from 6-8
week old animals and from 15 day old embryos. Assay data include primary data on
each sample prepared, expression profiles for each sample in each experimental gel,
and images of the gels.

Importantly, although only limited expression data are available at this writing,
GXD is poised to undergo rapid data expansion. The database is now implemented to
capture and make available other datasets and several other types of expression
information. Expression patterns are described by a comprehensive dictionary of
anatomical terms that has been developed in collaboration with Drs. Bard and
Kaufmann of the University of Edinburgh and Drs. Davidson and Baldock of the
MRC, Western General Hosptial, Edinburgh. Further, editorial interfaces for
capturing and updating assay data from publications and image scanning are in place.

Some expression data will be acquired from annotation of the literature by
database editors. However, because only a fraction of the gene expression data that a
laboratory generates actually appears in published form, it is anticipated that GXD
data largely will come from electronic data submissions. The Gene Expression
Annotator (GEA) has been developed for this purpose and is currently being tested
by several laboratories. The Annotator prototype provides important features for
capturing standardized descriptions of gene expression data, validating data, and
submitting data files. GEA supports a drag-and-drop facility for importation and
indexing of image files, a hierarchical look-up list for embryonic anatomy, and links
to resources such as MGD and GenBank for verifying nomenclature and describing
probes [18].

With the sum of these developments, GXD will quickly expand and new data sets
and features can be expected to appear regularly on the Mouse Genome Informatics
WWW site.

The Mouse Genome Informatics (MGI) WWW site

MGD and GXD together provide a unique resource for analyzing how the structural
genome, through developmental pathways, produces observed phenotypes (Figure 3).
These databases are tightly integrated to enable comprehensive analysis of genotype,
expression, and phenotype data. Further, as a practical consideration, because MGD
already contains many data types that need to be shared with GXD (e.g., data on
genes, molecular probes, inbred and mutant strains, references), efficiency is gained
by coordinating maintenance of these data.

126

Genotype Expression Phenotype

Figure 3. The Mouse Genome Database (MGD) provides genetic, genomic, and
phenotypic data on the mouse. These represent the two ends of the spectrum
illustrated here. The Gene Expression Database (GXD) bridges the molecular and
developmental aspects of translating genotype to phenotype. MGD and GXD are
accessible through a common WWW site at http://www.informatics.jax.org.

MGD and GXD provide user access through a common interface, the Mouse
Genome Informatics WWW site (http://www.informatics.jax.org). This site was
developed with the premise that biological scientists interested in accessing data on
the genetics and biology of the laboratory mouse prefer to access data in a
coordinated, integrated system. The MGI WWW site provides seamless access to
MGD and GXD, with extensive hypertext linking between the data sets, such that the
user can traverse all data without intentionally having to switch from a MGD to a
GXD view, and vice versa. Importantly, the MGI WWW site will allow future
expansion into other areas of mouse biological data, such as mouse tumor
information, which is slated to be released at our site later this year.

Future

MGD and GXD will continue to grow, expand, and evolve. Many new challenges are
anticipated as both high throughput and exquisitely sensitive methodologies continue
to develop, allowing new and exciting biological data to be collected. As well,
evolving computer technologies will give us the ability to analyze and display these
data in flexible graphical ways. The mouse has become a pivotal animal model
system. New emphasis is being placed on sequencing its genome and on generating
new mouse mutants by homologous recombination and saturation mutagenesis.
Comprehensive genetic, expression, and phenotypic analysis of these mutants will
provide unprecedented insights into the mechanisms that underlie normal
development and disease. MGD and GXD will continue to play an important role in
the acquisition and analysis of these critical biological data for the laboratory mouse.

127

Acknowledgments

MGD is funded by NIH grant HG00330; GXD is funded by NIH grant HD33745.
We thank the entire database staff for thier contributions to the success of these
projects: R.M. Baldarelli, J.S. Beal, D.A. Begley, R.E. Blackburn, J.J. Bobish, D. W.
Bradt, C.J. Bult, N.E. Butler, G.T. Colby, L.E. Corbani, G.L. Davis, C.J. Donnelly,
D.P. Doolittle, K.S. Frazer, J.C. Gilbert, L.H. Glass, P.L. Grant, D.M. Krupke, M.
Lennon-Pierce, L.J. Maltais, M.E. Mangan, M.E. May, M.G. McIntire, J.J. Merriam,
J.E. Ormsby, R.P. Palazola, S. Ramachandran, D.J. Reed, S.F. Rockwood, D.R.
Shaw, L.E. Trepanier, P. G. Trepanier, H. Zhou.

References

1. Snell, G.D. Genes and chromosome mutation. In: Biology of the Laboratory
Mouse, 1st Edition, Snell GD, ed. McGraw-Hill, New York. pp 234-247, 1941.

2. Green, M.C. The linkage map of the mouse. Mouse News Lett 47:16, 1972.
3. Green, M.C. The linkage map of the mouse. Mouse News Lett 49:17, 1973.
4. Green, M.C. The linkage map of the mouse. Mouse News Lett 51:7, 1974.
5. Green, M.C. The linkage map of the mouse. Mouse News Lett 53:9-10, 1975.
6. Green, M.C. The linkage map of the mouse. Mouse News Lett 55:6, 1976.
7. Green, M.C. Catalog of Mutant Genes and Polymorphic Loci. In: Genetic

Variants and Strains of the Laboratory Mouse, 1st Edition, Green MC, ed.
Fischer Verlag, Stuttgart. pp 8-278, 1981.
Doolittle, D.P., Hillyard, A.L., Davisson, M.T., Roderick, T.H. and Guidi, J.N.
GBASE - The genomic database of the mouse, Fifth International Workshop on
Mouse Genome Mapping, Lunteren, Netherlands. p 27, 1991.
Eppig, J.T., Blackburn, R.E., Bradt, D.W., Corbani, L.E., Davisson, M.T.,
Doolittle, D.P., Drake, T.E., Frazer, K.S., Grant, P.L., Guidi, J.N., Lennon-
Pierce, M., Maltais, L. J., Mankala, S., May, M.E., McIntire, M.G., Mobraaten,
L.E., Nadeau, J.H., Ormsby, J.E., Reed, D.J., Richardson, J.E., Rockwood, S.F.,
Roderick, T.H., Sharpe, S.B., Shroder, S.C., Smith, A.G. and Stanley, MIL. The
Encyclopedia of the Mouse Genome, an update. Third International Conference
on Bioinformatics and Genome Research, Tallahassee. p 73, 1994.

10. Eppig, J.T. Mouse DNA clones, probes and molecular markers. Mouse Genome

11. Nadeau, J.H., Davisson, M.T., Doolittle, D.P., Grant, P.L., Hillyard, A.L.,
Kosowsky, M. and Roderick, T.H. Comparative map for mice and humans.
Mamm Genome l:S461-S515, 1991.

12. Staats, J. Standardized nomenclature of inbred strains of mice: Eighth listing.
Cancer Res 45:945-977, 1985.

13. Richardson, J.E., Eppig, J.T., Nadeau, J.H. Building an Integrated Mouse
Genome Database. IEEE Engineering in Medicine and Biology 14: 718-724,
1995.

14. Blake, J.A., Eppig, J.T., Richardson, J.E., Davisson, M.T. and the Mouse
Genome Informatics Group. The Mouse Genome Database - (MGD) - A

8.

9.

91:594-755, 1993.

128

Community Resource. Status and Enhancements. Nucleic Acids Res 26(1): 130-
137, 1998.

15. Blake, J.A., Richardson, J.E., Davisson, M.T., Eppig, J.T. and the Mouse
Genome Informatics Group. The Mouse Genome Database (MGD). A
comprehensive public resource of genetic, phenotypic and genomic data. Nucleic
Acids Res 25(1):85-91, 1997.

16. Eppig, J.T., Blake, J.A., Davisson, M.T. and Richardson, J.E. Informatics for
Mouse Genetics and Genome Mapping. Methods: A Companion to
Methods in Enzymology 14: 179-190, 1998.

17. Ringwald, M., Baldock, R., Bard, J., Eppig, J.T., Kaufmann, M., Nadeau, J.H.,
Richardson, J.E. and Davidson D. A database for mouse development. Science

18. Ringwald, M., Davis, G.L., Smith, A.G., Trepanier, L.E., Begley, D.A.,
Richardson, J.E. and Eppig, J.T. The mouse gene expression database GXD.
Sem Cell & Devel Biol 8:489-497, 1997.

265: 2033-2034, 1994.

11 THE EDINBURGH MOUSE ATLAS:

INFORMATICS
BASIC STRUCTURE AND

Richard A Baldock, Christophe Dubreuil, Bill
Hill and Duncan Davidson

MRC Human Genetics Unit, Western General Hospital,
Crewe Road, Edinburgh, EH4 2XU, UK.

Introduction

The rapid accumulation of information from in situ experiments on the developing
mouse embryo, for example hybridization or immunohistochemistry, together with its
spatial and temporal complexity demands a spatio-temporal database to allow
collation, comparison, analysis and query. The patterns of gene-activity and
consequent effects on the tissue development are alternative views of the structure of
the embryo which has traditionally been described using morphologically defined
structures or anatomy. To record this data, in order to understand the complex
interactions between genes and the consequent morphogenesis and differentiation, we
require a means of mapping the spatial information onto a neutral representation. The
most appropriate representation for this task is the mouse embryo itself therefore we
are generating 3-D image or voxel models of the mouse embryo, initially at each
developmental stage defined by Theiler [1], but with the possibility of extension to
finer time-steps especially at the earlier stages. The voxel models are 3-D arrays of
image values corresponding to a conventional histological section as viewed under
the microscope and can be digitally re-sectioned to provide new views to match any
arbitrary section of an experimental embryo. The design of the gene-expression
database [2,3,4,5,6], and the reconstruction methods [7,8], have been presented
before and will not be repeated here. In this paper we discuss the underlying design
of the spatial aspects of the atlas and database, and some of the associated
bioinformatics issues.

130

Figure 1: Basic structure of the Edinburgh Mouse Atlas. The standardized and
structured anatomy nomenclature is linked (in the database) to 3D images
representing the corresponding region in the grey-level 3D reconstruction. This is
shown sectioned to reveal the histology.

The purpose of this database is to provide a means of comparing and analyzing
gene-expression, or other spatially organized data, within the developing mouse
embryo. Anatomy is our “external” description of the embryo while images of
expression domains of different genes brought together into a single space-time
frame provide an alternative “internal” description and a primary aim of
developmental genetics is to understand the “external” description in terms of the
internal gene activity. For this reason our database must include an unambiguous
mapping between space and anatomy. This implies a standardized anatomical
nomenclature as well as a mapping from anatomical term to spatial region or domain
in the reconstructions. This nomenclature database has been defined and is Internet-
accessible (genex.hgu.mrc.ac.uK). Figure 1 shows a graphical view of the structure of
the atlas.

The combination of the 3-D voxel models, the standardised nomenclature (and
associated lineage and tissue information) and the mapped anatomical domains is
known as the Edinburgh Mouse Atlas (EMA) and is being developed as a
collaboration between the Department of Anatomy, University of Edinburgh and the
MRC Human Genetics Unit.

The nomenclature is also the key element for a purely textual description of gene-
expression patterns and provides the link between the spatio-temporal gene-

131

expression database under development at the MRC, UK and the gene-expression
database (GXD) at the Jackson Laboratory, USA [3,6].

Voxel Models and Database Structure

Database systems for spatially mapped information have been developed and in
long use as Geographic Information Systems and a number are now emerging for
biomedical research and teaching [9,10,11,12]. The special feature of biomedical
atlases is that there is no single correct object, i.e. the underlying structures show
natural variation and the processing steps to acquire the data introduces additional
systematic and random spatial variation. This raises additional problems of data
mapping in order to enable spatial comparison. For gene-expression patterns the
basic data arises from images of tissue sections or “whole-mounts’’ which provide a
projection of the whole 3D pattern onto a 2D image. To map this onto a standard
embryo it must be possible to find the corresponding section or projection, and then
transform or warp the experimental data onto that atlas section or projection. In the
future, mapping methods from 3D data, e.g. from confocal microscopy, MRI or
section reconstructions, such as those developed for brain-mapping [13] will have to
be provided. The simplest reference model which can allow resectioning and
mapping of spatial information is a 3D array of image values or voxels.

For the purposes of developmental genetics the voxel model should be
interpretation-free, i.e. it must be possible to map information independently of any
other interpretation or description of the embryo (e.g. anatomy). This is important
because in general the visible morphological features (anatomy) at any stage will not
provide adequate descriptors for the gene-activity which may be related to the
development of form not yet visible. For the purposes of the database we have
selected the most commonly used histological staining (H&E), and digitized images
of the serial sections in order to reconstruct the 3-D image. For the EMA the spatial
resolution is determined by the original microtome section thickness which is 2
microns for Theiler stages 1-12 and 6 to 8 microns for older embryos.

Experimental data is mapped onto the models as a list of voxel locations (3D
binary image or domain). The gene-expression database will thus have a similar
structure to that shown in figure 1 for the anatomy. The reference reconstructions act
to define the coordinate system onto which the database entries with spatial domains
can be mapped. These initially will be the anatomical components and gene-
expression patterns but can be extended to any spatially organized data.

The image processing software adopted for this project has been developed by the
MRC Human Genetics Unit and is known as Woolz [14]. This is implemented in C
and is in the public domain (genex.hgu.mrc.ac.uk). The gene expression database has
an object-oriented design [15] and we have selected Objectstore (www.odi.com) as
the database management system because it allows the data object to be defined in
C++, which provides transparent access to the Woolz objects and procedures for the
purposes of update and query.

132

Atlas Spatial Coordinates

In defining an atlas it is important that the coordinate system make biological sense,
provide help for navigation and allow some temporal (stage to stage) comparison and
measurement. The image data has its own digital coordinate system corresponding to
the original section planes and discrete (voxel) coordinates which represent the basic
resolution of the database. To accommodate both coordinate systems the image data
is held in its original digital form and an affine transform (scaling, 3D rotation and
translation) is defined which converts image coordinates to “real-space’’ embryo
coordinates.

The real space embryo coordinates are defined by an origin and two spatial
directions which define two of the axes of a right-handed Cartesian coordinate
system. For the older embryos the origin is defined to be the rostral end of the
notochord which also defines the direction of the z-axis. The x-axis is then aligned to
point through the centre of the adjacent dorsal part of the neural tube. By this
definition and at this location in the embryo, the x-axis points ventral-dorsal, the y-
axis points right-left and the z-axis points caudal-rostral (figure 2).

Figure 2: Atlas coordinate
‘systems. The original digital
coordinate frame is represented
by the blue bounding box and is
related to the original section
images. The embryo coordinates
are shown in yellow with origin at
the rostral end of the notochord
(orange). The x,y,z axes are
shown with one, two and three
arrow heads respectively. The
outline of the embryo is shown as
a transparent shell for
orientation.

This definition will suffice for all embryos older than Theiler stage 11 when the
notochord becomes visible. For earlier stages the origin and caudal direction can be
defined by the primitive streak with symmetry used to define the other coordinates.

133

For blastocysts the shape of the blastoceolomic cavity provides the required origin
and directions although the rotational symmetry implies that the orientation of the x-
and y-axes is arbitrary. For each reconstruction, the rule used to determine the “real”
coordinate frame is accessible from the database.

Atlas Temporal Coordinates

The time sequence of “significant” embryological events is not linear in the sense that
the time resolution required to distinguish these events varies from fertilization to
birth. Furthermore, it is well known that embryos of different strains develop at
different rates. For this reason the use of “clock” time, for example days post coitus
(dpc), is not always useful as well as being difficult to determine. To overcome this
issue other time-scales have been defined which depend on developmental events, for
example the first appearance of “fingers”, or the closure of the eyes. The most widely
used scheme for such staging is that due to Theiler [1,16]. For particular periods of
development other staging systems are important namely Downs and Davies (D&D)
[17] for the early embryos, and somite count for the period from about 8 to 10 days
dpc.

Figure 3: Edinburgh Mouse Atlas
staging criteria and relationships
shown in terms of the extended
Theiler staging. Colour coded bars
and scales are provided for the
numerical measures. The
relationships between the Downs &
Davies (D&D) system for the two
strains C56BLxCBA and PO shown
in the boxes. Abbreviations are: LHF
- late head fold, EHF - early head
fold, LNP - late neural plate, NP -
neural plate, EB - early (Allantoic)
bud, OB - no bud, LS - late (primitive)
streak, MS - mid-streak, ES - early
streak, PS - pre-streak.

Ex
te

nd
ed

 T
he

ile
r S

ta
ge

134

Experimentally determined gene-expression patterns will come from embryos that
may not match the defining criteria for a particular stage because of inter-strain
differences or simply natural variation and the embryos may not have been staged
using the Theiler system. In this situation the data will be submitted with the authors’
best estimate in whatever staging system used, and kept so that a user can be aware of
how the stage was estimated. For search, that temporal information will be converted
to an equivalent Theiler stage range, since in general there may not be sufficient
precision to determine a single corresponding Theiler stage. The transformation
between different staging systems is encapsulated in the table published by Bard et al
(1998)1 and is reproduced on the WWW pages of the Mouse Atlas Project

(genex.hgu.mrc.ac.uk) and shown
graphically in figure 3.

To accommodate the finer
grain descriptions of the
development sequence provided
by Downs and Davies [17] for the
early embryos, the “integer”
Theiler stages have been extended
to “floating-point” thereby
defining sub-stages in the Theiler
system.

Figure 4: Edinburgh Mouse Atlas
section viewing coordinates. The
fixed point can be redefined as
required

Viewing Coordinates

To submit data to the database or to make queries involving spatial coordinates the
user must be provided with an interface in which to define spatial position or region.
The simplest interface appropriate to this task presents the user with a section view

¹ Submitted to Development.

135

which is a cut at an arbitrary orientation through the voxel model. The viewing
coordinates define this section, how it is displayed on the screen and the transform
from screen to model coordinates for mapping data or DB query.

To define the sectioning plane two angles are required to define the viewing
direction and a perpendicular distance from a fixed point will define the section. For
the viewing angles we define pitch as the angle by which the view is tilted away from
the vertical, and yaw as the rotation of that view around the vertical. These two
angles are the usual spherical coordinates, and and define the normal to the
viewing plane. The other parameters that define the plane are the fixed point f and
distance d.

The transformation from the image coordinate r = (x,y,z)T to section coordinate r’
= (x’,y’,z’)T is given by

r’ = R (r - f), with z’ = d,

and the rotation matrix R is defined in terms of rotation by the three Eulerian angles
(xsi, eta, zeta) [18] by

The two Eulerian angles and are equal to pitch and yaw respectively and with the
fixed point and distance determine the section plane.

To determine the transform from screen to voxel coordinates the third Euler angle
must be fixed. The choice of this angle depends on how the user wishes to view the

136

data and we define two viewing schemes termed the “up-is-up” and “statue” modes.
For “up-is-up” the user defines an up-vector within the 3D reconstruction so that the
projection of that vector onto the selected plane will be parallel to the displayed y-
axis. By default this vector is defined to point up through the head so that a coronal
or sagittal view will be displayed with the head neural tissue at the top of the image.
For this mode the third Eulerian angle zeta is calculated by finding the component of
the up vector u that is perpendicular to the viewing direction v, i.e.

and R is the rotation matrix for = 0). This vector is in the original
coordinate frame and the required angle is determined by transforming w to the
viewing coordinates and calculating the angle with respect to the y’ axis:

The “statue” mode can be understood by considering the voxel image to be a statue
with the user walking around on a horizontal plane i.e. the x-y plane of the image.
The section seen by the user is rotated about its axis of intersection with the
horizontal for display on the screen. For the user the effect is that rotating a section
view around a vertical axis will result in a gradual rotation of the displayed image.
The Euler angles for this viewing mode are = –

Navigation

Locating a specific section within a 3D volume can be quite difficult so, in addition
to the option of panning though to a recognizable position which can then be defined
as the fixed point, a number other navigational aids are provided. The first is the
option of interactively defining a second fixed point which then reduces the number
of degrees of freedom to one, namely rotation around the line joining the two points.
This is termed the torsion, denoted and uniquely defines the viewing direction

n = cos() n2 + sin() n3,

where the orthonormal vectors n1 and n2 are defined by rotating the coordinate frame
so that the z-axis is parallel to the vector joining the two fixed points, namely the
vector

137

This defines a viewing directionand corresponding rotation matrix R0 by

The new viewing angles are then given by cos(= nz and tan () = ny/n x,
and are parametrised by which ranges from 0 to 2 .

The second means of navigation is to use fiducial points,i.e.points that have been
previously defined and exist in the Atlas database for the purposes of navigation.
Selecting a single point defines a rotation center, two points will define a line as
above and a third will fully define a plane.

Other navigational support is provided by a 3D feedback window (see figure 5) in
which the section plane is displayed relative to the image bounding box and selected
anatomical structures.

Data Submission

The Edinburgh Mouse Atlas has been developed primarily to support a gene-
expression database by providing a spatial framework for the mapping expression
and anatomical information. The methods for mapping spatially organized data onto
the reconstructions can be categorized under the headings: text, painting or warping.

Text submission:

The spatial domain is described by listing anatomical components or existing
database entries. Typically the user will define a domain by selecting anatomical
components with the assumption the required domain is the union of the component
domains (which by definition do not intersect). If in addition the user wishes to use
predefined gene-expression domains these can be used to refine the new domain by
using the set operations union, intersection and difference on the corresponding sets
of voxel locations.

cos() = n and tan(= n and hencenIx1y /)Iz

138

Painting:

An alternative mean of defining the domain is for the user to delineate or paint the
new domain directly onto the reconstruction using the Edinburgh Mouse Atlas paint
program (MAPaint see figure 5) or equivalent software [9]. This allows the user to
select an arbitrary section and delineate regions directly using a variety of painting
“tools” [9]. This program also allows the editing of domains defined by any other
means therefore can be used in conjunction with a text definition of the domain to
allow additional refinement. This is likely to be more efficient than defining the
whole 3D domain de novo.

Figure 5: The main feedback window and two section views of the Edinburgh Mouse
Atlas Theiler stage 14 embryo in the program MAPaint showing the 3D feedback and
view controls.

Warping:

Submission using text and/or painting can be time consuming and most graphical
data will be entered by using image processing both to extract the required pattern
and to transform or warp the data onto the atlas. Before generating the submission it
is assumed that the user has digitized the required experimental data, then the
simplest means is to locate the matching section from the atlas and for the user to
define “tie-points’’ that can be used to produce a warp transformation, e.g. as a thin-

139

plate spline [19] or polynomial [20], to map the experimental data onto the atlas
image. If the resultant transformation is not correct then the user can add additional
tie-points or directly edit the resulting domain using painting. There are many
possibilities for determining the warp transform including a fully automatic matching
[8]. In practice the mechanism must be fast enough to allow interactive adjustment
and editing.

So far we have considered section data which assumes that the experimental
section corresponds to a planar section through the atlas embryo. If the experimental
data is in the form of a 3D image then full 3D warping will be necessary e.g. [13].

Data Extensions

The initial implementation of the image-mapped database will store the domains
(binary image) of gene-expression only. This means that expression strength
information can only be encoded as separate domains, e.g. weak, medium and strong,
or by storing a dithered version of the grey-level image. The Woolz image format
includes a simple extension to grey-level types within the image domain and
therefore we plan to extend the schema to allow full grey-level images of gene
expression data to be submitted. This means that the query language can be extended
to use grey-level operations such as gradient and intensity.

References

1. Theiler, K. The House Mouse: Atlas of Embryonic Development, (Springer-
Verlag, 1989).

2. Baldock, R A, Bard J, Kaufman, M H & Davidson D, A Real Mouse for your
Computer, BioEssays 14(1992)501-502.

3. Ringwald M, Baldock R, Bard J, Kaufman M, Eppig J, Richardson J E, Nadeau J
& Davidson D, A Database for Mouse Development, Science 265(1994) 2033-
2034.

4. Davidson D, Baldock R, Bard J, Kaufman M, Richardson J E, Eppig J T &
Ringwald M, Gene-Expression Databases, In Situ Hybridisation: A Practical
Approach, ed. Wilkinson D, (IRL press, Oxford, 1998).

5. Davidson D, Bard J B L, Brune R M, Burger A, Dubreuil C, Kaufman M, Quinn
J, Stark M & Baldock R A, The Mouse Atlas and Graphical Gene Expression
Database, Sem. Cell & Dev. Biol. 8(1997)509-517.

6. Eppig J T & Richardson J E, MGD and GXD, this issue.
7. Guest E & Baldock R A, Automatic Reconstruction of Serial Sections Using the

Finite Element Method, Bioimaging 3(1995)154-167.
8. Baldock R A, Verbeek F J & Vonesch J-L, 3-D Reconstruction for Graphical

Databases of Gene-Expression, Sem. Cell & Dev. Biol. 8(1997)499-507.

140

9. Arya M, Cody W, Faloutsos C, Richardson J & Toga A, A 3D Medical Image
Database Management System, Comp. Medical Imaging and Graphics,

10.Hohne K H, Pflesser B, Pommert A, Riemer M, Schiemann Th, Schubert R &
Tiede U, A new representation of knowledge concerning human anatomy and
function, Nature Medicine 1(1995)506-5 10.

11. Toh M Y, Ackerman M, Rodgers R P & Banvard R A, Visible Human Project on
the Internet - World-Wide-Web Access, Radiology 201(1996)9501.

12. Williams B S & Doyle M D, An Internet Atlas of Mouse Development, Comp.
Medical Imaging and Graphics 20(1996)433-447.

13.Thompson P & Toga A W, A Surface-Based Technique for Warping 3-
Dimensional Images of the Brain, IEEE Trans on Medical Imaging 15(1996)402-
417.

14.Piper J & Rutovitz D, Data Structures for Image Processing in a C Language
and Unix Environment, Pattern Recognition Letters 3(1985) 1 19-129.

15. Booch G, Object-Oriented Analysis and Design with Applications, 2nd edition
(Benjamin Cummings, California, 1994).

16.Kaufman M H, The Atlas of Mouse Development (Academic Press, London,
1992).

17. Downes K M & Davies T, Staging of Gastrulating Mouse Embryos by
Morphological Landmarks in the Dissecting Microscope, Development
118(1993) 1255- 1266.

18. Whittaker E T, A Treatise on the Analytical Dynamics of Particles and Rigid
Bodies, 3rd edition (Cambridge University Press, Cambridge UK, 1927).

19. Bookstein F L, Thin Plate Splines and the Atlas Problem for Biomedical Images,
Lecture Notes in Computer Science 511(1991)326-342.

20. Olivo J-C, Izpisue-Belmonte J-C, Tickle C, Boulin C & Duboule D,
Reconstruction from Serial Sections: a tool for developmental biology:
application to hox genes expression in chick wing buds, Bioimaging 1(1993)151-
158

20(1996)269-284.

12 FLYBASE: GENOMIC AND POST-
GENOMIC VIEWPOINTS

The FlyBase Consortium¹

FlyBase, The Biological Laboratories, Harvard University,
16 Divinity Avenue, Cambridge, MA 02138

Introduction

FlyBase is a genomic and genetic database of the family Drosophilidae. The vast
majority of data concern the premier genetic model among these flies — Drosophila
melanogaster. D. melanogaster has been at the leading edge of investigations of
many aspects of genome structure, gene regulation, intercellular communication,
developmental genetics, neurogenetics, cell biology and population genetics.
FlyBase has been developed to represent the core information regarding these
studies.

FlyBase is currently undergoing a major reorganization and expansion. The
original FlyBase consortium, which focused on capture and presentation of the
Drosophila genetic/genomic “literature”, has now merged efforts with the public
informatics groups of the two major Drosophila Genome projects (Berkeley
Drosophila Genome Project BDGP, and European Drosophila Genome Project —

EDGP). While separate servers still exist for FlyBase, BDGP and EDGP, this is a
transitory condition. Within the next year, the goal is to have the combined data of
these projects homogenized and presented on a single integrated server with several
mirror sites around the world. Having a unified genome project and literature
database is clearly of benefit to the community; it of course represents considerable
challenges to FlyBase in the integration and interconnection of these broad ranges of
data types. As part of the integration process, it is likely that the content and
organization of reports will undergo considerable evolution. Because it is being
written as the FlyBase transition is occurring, this report will focus on the current
views of FlyBase and how these are expected to change as a result of the integration

Corresponding Author: Bill Gelbart, gelbart@morgan.harvard.edu.¹

—

142

process. Because the databases are currently in heterogeneous format, the road to
integration will be an interesting experiment in database interconnectivity.

The FlyBase Consortium Model

FlyBase has opted for a distributed structure, in which several remote sites participate
in producing a single integrated database. With the inclusion of BDGP and EDGP,
the FlyBase Consortium includes 5 groups, located at: Harvard University,
University of Cambridge, Indiana University, University of California — Berkeley,
and the European Bioinformatics Institute. The advantages of this approach are the
small sizes of the individual groups, the inclusion of several project directors who in
part act as a set of internal advisors, and the heterogeneity of viewpoints that are
represented. FlyBase has concluded that this distributed organization works
extremely well for its purposes. It does however place considerable emphasis on
issues of data transfer, synchrony, and integration.

The Subdivisions of Data Responsibilities within FlyBase

The data outputs of the BDGP and EDGP projects are their individual
responsibilities, as are the literature data outputs of the original FlyBase group.
These include:

BDGP:
1 .P1/BAC STS content physical map of the genome.
2.Genomic sequence of the autosomes.
3.Characterization of ESTs from a variety of cDNA libraries.
4.Sequencing of representative near full-length cDNAs.
5 .Autosomal P element insertion mapping and characterization.
6.ComputationaI identification of genes.
7.Incorporation of the above data into genome level maps.

EDGP:

8.Cosmid/BAC physical map of the genome.
9.Genomic sequence of the X chromosome.
10.X chromosomal P element insertion mapping and characterization.
11.Computational identification of genes.
12.Incorporation of the above data into genome level maps.

Literature:
Bibliographic information, including links to bibliographic databases such as
PubMed and BIOSIS.

143

Genes, including links via published sequence and functional similarities to other
molecular and community databases.
Gene products: transcripts and proteins, including structural and expression
pattern data.
Integrated gene order maps, incorporating recombinational, cytogenetic and
molecular information.
Annotated molecular maps: reference sequence gene maps; regional physical
maps.
Alleles: wild-type, mutant and engineered.

Engineered and natural transposons and their insertions in the genome.
Fly strains: principally, the publicly-funded stock collections.
Contact information for Drosophila researchers.

FlyBase “literature” is meant broadly, and includes hard copy publications,
sequence databank entries, bulk submitted data, stock lists, textual personal
communications, etc. The principle is that all information in FlyBase is attributed,
and is linked to a hard copy or electronic text. The literature database consists of
records containing a mixture of controlled or structured fields and free text
descriptions to extend the structured information. Extensive internal and external
cross-referencing of related data objects is included. For these controlled fields,
FlyBase has developed extensive controlled vocabularies, e.g., for phenotype,
anatomy, mutagen, function of gene product.

Data Curation Approaches

The data of the BDGP and EDGP consist almost exclusively of structured outputs of
high throughput genomic analyses. There is considerable curational input at such
levels as gene predictions in genomic DNA sequences, and genetic analyses of P
element insertions.

Chromosomal aberrations.

The literature curation aspect of FlyBase began in 1992. It took as a starting
point the compilation of Lindsley and Zimm [1], which was largely current to the
beginning of 1990. The goal was to capture information from the post-1989 primary
literature, and selectively curate earlier material as deemed necessary. Curation of
genetic information occurs shortly after journal publication for those journals
considered to be the major ones used by the Drosophila research community. For
papers with molecular information (e.g., on gene structure, transcripts, proteins,
expression patterns, transposons or their insertions), these receive a second round of
curation with sets of papers relating to the same gene being curated together;
available GenBank/EMBL/DDBJ records are examined at the same time, since a
better picture of these molecular data classes emerges from simultaneous
consideration of a group of related papers. Curated reference annotated sequence
records have recently been added to molecular curation (further discussed in
Sequence Annotation, below).

144

Creation of External Database Links

FlyBase receives daily updates of GenBank/EMBL/DDBJ records of the family
Drosophilidae, and captures the links to valid FlyBase gene symbols and identifers.
Tables of these links are shared with the sequence databanks. Similar procedures are
used with regard to links to other sequence databases, particularly SwissProt. Links
from the literature to “homologs” in other species are selective, and are based upon
stated sequence similarities in papers. Based on these statements, FlyBase captures
the valid gene symbol and identifier for the declared “homolog” in the foreign
community database. The BDGP and EDGP use sequence similarities as one aspect
of gene prediction, and capture and maintain links to the strongest BLAST
similarities in GenBank/EMBL/DDBJ, focusing on the major genetic systems
wherever possible.

Data Coordination within FlyBase

It will be obvious from the above that there are many data objects in FlyBase that are
common to the genome projects and the literature (the latter being the product of the
entire Drosophila research community). In order to bring these data into a single
structure, we will need to integrate and homogenize the data in a stepwise process.

All FlyBase data will move, as a first step into either of two databases: one being
an integrated Genome Project database and the other an integrated Literature
database. (The integrated Literature database is already in production use; the
integrated Genome Project database will be implemented soon.) At this step,
considerable data validation and homogenization occurs. The next step will be to
interrelate and homogenize literature-derived and genome project data of the same
class. This has been done successfully as an experiment for selected data classes,
such as transposon insertions. Based on this experience, expert annotators will need
to examine the data to ensure that identical objects with variant names are being
recognized as identical, and valid symbols will need to be agreed upon and
propagated to all of the relevant working and intermediary databases. Based on
FlyBase’s experience with the integrated Literature database, procedures will be
established such that new data objects at each site will receive valid symbols and
interconnections to other valid objects as they are introduced into the database. The
final step will be to map field identities between the integrated Literature and
integrated Genome Project databases and thereby permit the data to be housed in one
structure.

145

Public Access to FlyBase Data

The current home WWW servers for genome project and literature data are:
BDGP: http://fruitfly.bdgp.berkeley.edu/
EDGP: http://edgp.ebi.ac.uk/
FlyBase literature: http://flybase.bio.indiana.edu/

The current organizations of these sites are different, reflecting the ways in
which the developers separately envisioned suitable presentation formats for their
principal data objects. These will evolve into a common presentation format for the
integrated server. On the integrated server, genome project and community data will
be presented in merged reports, or in genome project-only format, according to the
preferences of the user. In developing the integrated server, some of the important
considerations will be:

graphical overviews summarizing large data sets.
use of publicly available, nonproprietary software tools to facilitate mirroring.
provision of user-selected formatting options.

A challenge for all database projects is how to cope with the ever-increasing
acceleration in rates of data capture. FlyBase’s approach to this issue is to condense
much of the information into summary graphics wherever possible. This is currently
under development for two areas.

One major mode of access to FlyBase data is via chromosomal location. For
chromosomal or genomic information, a series of Java-based map displays have been
developed by the BDGP and Neomorphic, Inc., and these will be incorporated into
the integrated FlyBase server. These displays may be viewed at the BDGP WWW
server. These dynamic displays present genomic and genetic data in several levels,
from a “low magnification” view based on the polytene chromosome map, all the
way through annotated maps of sequenced genomic clones and sequence alignments.

Another major route of access is through phenotype or expression pattern. Here,
conventions for naming anatomical parts are not as well established as for
chromosomal location. To facilitate user access to phenotype or gene expression
pattern information, FlyBase is developing dynamic anatomical Java displays, in
which anatomical drawings can be selected so that the name of the relevant structure
is displayed, and will enable queries for genes whose phenotypes affect this structure,
or whose transcripts or proteins are expressed in this structure. A sample of such a
display is shown in the images section of the FlyBase server.

Other considerations relate to providing flexible and effective access to FlyBase
data. Because of variability in the reliability and speed of Internet connections,
particularly between continents, FlyBase has benefited from the willingness of
regional sites to serve as FlyBase mirrors. Currently, sites exist in the United States,
England, France, Israel, Japan and Australia. Typically, these mirrors are updated

146

nightly. Users are encouraged to connect to local sites for the most rapid response
time. To facilitate development and maintenance of mirrors, the FlyBase WWW
server has developed a series of portability features, including the use of readily
mirrored, nonproprietary software, nightly updating of the mirror sites, and
customized user-selected format preferences. For example, the user preferences
would allow an individual (or an entire mirror site) to connect to the nearest server
for external database links.

Public Server Update Schedule

The FlyBase data classes are updated asynchronously, and this is expected to
continue indefinitely. Considerable editorial work occurs in the batch processing of
records, and for this reason FlyBase has opted against a daily update procedure.
Sequence records need to be the most timely; for this reason, the genome databases
are updated weekly. These updates include the GenBank/EMBL/DDBJ accessions; it
should be noted that all available genomic sequences are posted immediately to the
HTG (high throughput genome) section of the sequence databanks. Public
bibliographic, genetic and molecular data classes are updated monthly, but on
independent schedules.

Genetic nomenclature is in constant flux, sometimes because a group of
laboratories have not yet reached consensus on an appropriate gene name, but other
times because research on seemingly independent genes converge when genetic or
molecular analyses reveals that they are working on the same entity. Because a gene
symbol is part of the name of many related entities -- alleles, transcripts, proteins,
transposons, insertions, etc. – the updating process requires substantial validation,
editing and conflict resolution. In this process, there is significant contact with
authors on specific issues.

Future Issues and Concerns

Sequence Representations in Fly Base

While the first genomic sequence for Drosophila melanogaster will be completed by
the end of 2001, this will in many ways just be the beginning in terms of thorough
genomic analysis of the fly. Thus, there is a need for continual and indefinite
maintenance of the computed and experiment-based annotation of this sequence.
Indeed, it is through such annotation that the genomic sequence becomes meaningful.
Thus, much of FlyBase can be viewed as statements attached directly or indirectly to
the sequence-level annotation features.

147

There are two classes of annotation maintained by FlyBase. The first of these is
clone-based, in which the deposited fully-sequenced BDGP and EDGP clone records
are periodically re-analyzed for computational and experimental predictions of
transcription units and coding sequences (gene calls). The information used in these
analyses will be restricted to information produced by the genome projects
themselves, together with information derived from existing GenBank/EMBL/DDBJ
accessions.

The other class of annotation is directed at capturing community-based
annotation features. There is a very active Drosophila research community that
produces connections between genes as molecular entities and genes as modulators of
phenotypes. This is true not only at the whole-gene level, but also in terms of
individual features of the gene -- introns and exons, coding sequences, enhancers and
silencers, boundary domains, mutant alterations, transgenic rescue fragments, etc.
While the community data set is rich, much of it has not been incorporated into
GenBank/EMBL/DDBJ records, either because the data are only known at the
restriction map level or by omission. As part of the literature molecular curation,
FlyBase is capturing community annotation features, not only from the
GenBank/EMBL/DDBJ records themselves, but also from the primary literature.
Interactive tools have been developed that attach these features to a reference gene
sequence — typically the relevant finished genome project sequence for that portion of
the genome. All features are given unique FlyBase symbols and identifiers, so that
biological information about these features can be directly connected to them. Many
features defined only at the restriction fragment level can be connected to the
sequence level map through comparisons of the published and computed restriction
maps, and the identification of landmarks common to the publications and the
reference sequence record.

The final step in the compilation of reference sequence records is to merge the
computed and literature annotations into a combined virtual sequence of the
Drosophila melanogaster genome. These sequences will represent the best
summation of FlyBase’s understanding of the structure of the genome, its genes and
their products. Because the different aspects of sequence level curation are the
responsibilities of sites spread over two continents, the process of integration of these
data will require curators to communicate via editable real-time graphical displays.

The current plan is that once these two classes of annotation are created, they
will be updated on a 6 month cycle. Once the entire genome is complete, this will
require maintenance of records spanning approximately 600 kb per day of
computational gene prediction of clones. As only a small subset of Drosophila genes
currently are being studied at the molecular level by the community (although this
may change dramatically once the entire genome sequence is available), the rate of
steady-state sequence updates with regard to community annotations is impossible to
estimate. Clearly, direct user involvement will be of great benefit in scaling this
community annotation effort, and might occur via more systematic use of sequence

148

databank feature tables and/or via FlyBase direct user submission tools. Scaling this
effort and obtaining effective community involvement in data capture is an important
challenge for the future.

Maintaining Extensive Hyperlinks between Community Databases

One of the outstanding features of the WWW is the ability to embed cross-links
between related items on different servers. FlyBase maintains extensive tables of
connections to support such cross-links, especially to sequence and community
databases. We recognize, however, that this effort is incomplete and not sustainable
by FlyBase alone. For example, FlyBase reflects statements of “homology” in the
primary literature. Except for fully sequenced organisms, however, these
declarations of “homology” are generally based on incomplete information, and more
similar members of the same protein family may well be identified subsequent to
publication. Further, FlyBase considers papers that involve the identification of a
Drosophila gene with sequence similarity to a gene in another taxon as being in its
literature curation domain, but the converse is not true. Papers in which a Drosophila
sequence is used as a probe to identify related sequences in another organism are
viewed as appropriate for curation by the community database for that organism, if it
exists. There is clearly a need for an independent database of links. at least between
the genomes of the major genetic systems, that these organisms’ community
databases contribute to and use for more systematic interconnections.

Genome, Proteome and Phenome Views of FlyBase

Just as the availability of full genomic sequence has changed the way research is
done, functional genomics — that is, the high throughput analysis of gene products –
will clearly have a similar, if not more dramatic, impact. One tremendous advantage
of genomic information is the increased efficiency of positional cloning and gene
identification. Once the gene is identified, however, researchers are usually
interested in understanding relationships at the level of gene products and their
physical, cellular, developmental or behavioral interactions. Much modern research
exploits the major genetic systems to answer sophisticated questions about the
relationship of the “proteome” (the entire constellation of protein products produced
by a genome) with the “phenome” (the constellation of phenotypes controlled by the
various genetic units of the genome).

We are already seeing this trend in Drosophila research. Much research focuses
on fleshing out pathways through a combination of physical methods to identify
protein-protein, protein-RNA or protein-DNA interactions, together with genetic

149

screens to identify direct or indirect interactions based on phenotypes or gene
expression patterns. It is thus important for FlyBase to recognize and support data
representations and reports based on relationships among gene products in addition
to those relationships based on chromosomal location. Some ways of addressing this
need can be addressed now; others present substantial technical hurdles.

The FlyBase architecture supports the curation of different versions of a gene
product -RNAs or polypeptides or molecular complexes – as different data objects,
so that annotations can be attached to the appropriate objects. This is an essential
part of an organism-specific data model, since much of the regulation of cellular
function boils down to gene products that can be toggled between alternative states
based on allosteric interactions, subunit modifications, or differential subunit
interactions.

Describing the interactions and the pathways is an even larger and more difficult
task. Much of the available physical interaction data involves in vitro assays, usually
in heterologous systems. These data are often hints or suggestions of possible
interactions rather than readily verifiable ones. Genetic interaction data have their
own set of pitfalls. While the individual observations can be represented, our ability
to compile them into computed pathways is impaired by the inherent limitations of
the current data sets. Thus, we need to capture and represent data in a manner that
reflects the current state of knowledge, but that will be of value once better standards
and methods are available. This represents a considerable challenge at the strategic
and computational levels.

Another aspect of the problem are those of spatial pattern: descriptions of
anatomical phenotypes and gene expression patterns. Were rigorous representations
of spatial pattern possible, these could be used in combination with interaction data
to distinguish among possible interactions. (For example, two proteins that are shown
to physically interact but which are never expressed in the same tissues are unlikely
to interact in a biologically meaningful way). FlyBase has developed an extensive
ontology of anatomical parts, and using this vocabulary, phenotypes and expression
patterns are captured. Either the authors or the curators, however, end up throwing
away a great deal of data in turning two or three dimensional spatial information into
text. Similarly, dependence on text terms to support user queries places inherent
limitations on the depth of questions that can be answered. Ultimately, it will be
important for tools to be developed that can effectively capture quantitative spatial
information. Only in this way can these data can be directly queried without
imposing a strong filter on the data set through its conversion into much coarser
textual objects. This is obviously a major long term issue which is already receiving
attention, and we can expect that it will continue to be an important area for
computational research.

150

References

1. Lindsley, D. and G. Zimm. The Genome of Drosophila melanogaster.
Academic Press, NY., 1992, 1133 pp.

13 MAIZEDB: THE MAIZE GENOME
DATABASE

Mary Polacco and Ed Coe

USDA-ARS Plant Genetics Research Unit
Department of Agronomy 210 Curtis Hall

University of Missouri -- Columbia
Columbia, MO 65211

INTRODUCTION

In 1923, R. A. Emerson addressed a detailed letter to “Students of Corn Genetics’,
soliciting community solutions to issues of gene nomenclature. (Emerson 1923)
Building on this stimulus, Emerson hosted a ‘cornfab’ in his hotel room, during the
December 1928 Genetics meetings in NY. April 1929, Emerson and colleagues
disseminated the first Maize Newsletter (MNL): a mimeographed summary of the
‘cornfab’, along with a list of 20 available stocks, a list of curators for individual
linkage groups, a summary of available linkage information, and 78 references where
linkage data were to be found. The first published linkage map compilation in 1935
showed 62 loci. (Emerson et al 1935) In 1991, USDA-ARS initiated a plant genome
database project, and tasked the editor of the MNL, Ed Coe, to develop a maize
genome database. The 1991 MNL, now volume 65, included 1439 Stocks available
from a USDA-ARS funded Stock Center, 840 entries on the Gene List with 423 key
references, an additional 776 references from the annual literature and some 950
colleague addresses. Data from this issue were transferred into the Fall 1991
prototype MaizeDB.

The 1991 prototype was based on insight gained by the Coli Genetics Stock Center,
New Haven, CT with an industry standard software, Sybase, for the database
management system, and the development of Genera software (Letovsky & Berlyn
1994) to create forms for query and data entry and define entities without writing
code. This choice of software has permitted concentrating resources on data curation
by a team of ‘biologists’, with support of a systems analyst. The Sybase software had
been employed by various other species genome databases, including the human
genome. A sample of the Genera form specification for the short locus query form is

152

appended to this chapter, along with the form specified, and a sample query returned.
Indexed flat-files which provide full-text searching have been a standard feature of
the Genera software. In 1994, MaizeDB, http://www.agron.missouri.edu employed
Genera upgraded for WWW form and full-text query access; the upgrade also
permitted facile linking with external databases. Data relevant to the maize genome
exists in major sequence, reference and germplasm databases, as well as other
species-specific genome databases, including E. coli, yeast and other plant genomes.
Reciprocal, record-to-record links with SwissProt were established June 1994, and
followed soon thereafter with reciprocal links to GRIN, the Germplasm Resource
Information Network for the US.

DATA CONTENT

MaizeDB maintains the current genetic maps for the community, together with
supporting documentation, and information about gene function and expression.
Supporting documentation may includes(1) data analyses summaries, such as QTL
experiments; (2) raw data, map scores and recombination data; (3) references, with
address information for many of the authors; (4) access to research tools, including
genetic stocks, DNA clones and PCR primer sequences. Gene function and
expression are provided in comments on the locus pages, in the gene product, mutant
phenotype, trait information about mapped and unmapped. Gene function and
expression are provided in comments on the locus records, by links to gene product,
mutant phenotype, and agronomic traits.

Over 110,000 records are currently maintained by MaizeDB; major classes of
information are summarized in the below table. There may be upwards of some
40,000 genes in maize. Of the 15,764 maize loci in the database, there are 6,028
genes, where 1,188 have been mapped to chromosome arm or better by mutant
phenotype or single copy probe. The MNL Gene List, now includes 1,512 unique
genetic factors of which 827 have some map position. Loci have expanded from the
62 phenotypically identified genes on the 1935 map compilation to include
pseudogenes, probed sites (PCR or RFLP); restriction fragments (mitochondrial
maps), chromosomal segments, points and QTL (quantitative trait loci).

153

The bins map strategy has been employed by the MNL editor to unify the extensive
maps in the community, and without misrepresenting known order. Order of loci
within a bin may be ascertained by examining the empirically determined maps,
which are provided within the database.

The MaizeDB server also hosts the electronic MNL, abstracts for the annual
meetings, and provides a public clearing house for gene nomenclature and registry of
new names.

DATABASE DESIGN AND FEATURES.

The database contains 27 entities, 340 tables, 53 views, 50 triggers and 221 stored
procedures. Stored procedures written at Missouri generate an ACeDB product that
was first released in June 1993. Major enhancements to the 1991 prototype were
implement March 1993; QTL experiment representations were added 1994. Minor
design upgrades, or example merging two entities complete with data, creating a
Trait entity, and writing triggers have been accomplished with the core MaizeDB
staff at Missouri. Schema may be found at our public ftp server

154

(teosinte.agron.missouri.edu); both computer and biological documentation about
fields, tables and entities may be accessed by WWW form query.

The database supports controlled vocabularies, with a thesaurus. All major entities
have synonym tables. The most carefully curated terms are the entity “Type” terms,
those defining relationships between loci, and the keywords used for reference
annotation. The data entry forms permit selecting from the controlled vocabulary,
and also entry of new terms if appropriate. In contrast to many of the controlled
vocabularies, for example body parts, terms for entity types are kept to a minimum,
and the use of broader and narrower terms avoided. Instead, there are tables for
entity properties, where a locus of type Gene or Cytological Structure may share a
common property, for example MNL Gene List.

EXTERNAL DATABASE LINKS

Over 13,500 records have over 62,000 links to some 30 external databases. When
more than one record links to the same external database record, each link is counted
in the summation. Links to loci are most often indirect, and linked directly to a gene
product, probe, variation or reference. While only 2% of the loci may be linked to an
external database, 10% of the locus variations have links, as do 27% of Probes, 32 %
of Gene Products, 30% of the Stocks and 18% of the References, excluding the MNL
and maize meeting abstract links.

Links to external databases are provided by two modes: user request for data from the
other database, where typically a particular database may be selected for retrieval of
a sequence, or by MaizeDB pre-determined choice or ‘jump’. In both cases, external
databases are treated as Persons. The code for the ‘jump’ is embedded in Genera and
utilized in MaizeDB both for Person and for Loci; see also the genera specification
for the locus query page in Appendix 1.

An example of user-choice for external database:

An example of a jump is provided by the maize locus wxl, which lists several
related loci as below:

155

Clicking on one of the orthologous rice or wheat loci retrieves the Plant Genome
database for that record. In contrast

DATA ENTRY

Form entry is provided by the Genera software utilized for non-WWW access to the
database. A small group of both on-site and off-site curators have access to the
central Sybase tables using this software. Other data is entered using customized
scripts, developed by curators for large electronic notebooks in the community, or
standard script, such as that developed in 1993 for journal article import from
standard reference manager format. It has been upgraded by MaizeDB staff to enter
books and book chapters, and also MNL articles. The reference loading software
matches to previously entered references, tills in missing information and reports
actions taken and ambiguities.

DISSEMINATION:

WWW form permit queries based on multiple attributes, and return lists of objects
that match the selected constraints. A sample form for Locus is appended. Full text
query offers an opportunity to the novice user to obtain a sense for how the data are
represented. Flat-files for the full-text searching are computed monthly, but retrieve
real-time data..

Special Data Formats:

In addition to form queries, based on selection and/or 'fill-in-the-blanks' query
constraints, MaizeDB supplies several browser oriented formats on the WWW.
These formats may be on-the-fly, with some or no user constraint options or they may
be periodically extracted, with or without curator intervention. Hyper-links on lists
will retrieve the current record from the database, based on the accession ID# in
MaizeDB for the entity. Some of the lists are computed in real-time, others extracted

156

periodically, either automated, the Core Marker list), or with curator intervention (the
MNL Genelist).

1. Computed in real-time -- no user constraints.

Clicking at the Illionois Sotck Center page will initiate a real-teim query for the
current listing of Stocks, either total or the 1998 additions. The catalog returned is
extracted from the Stock and the Stock#Description tables and has hypertext links to
the Stock entity. It provides the Stock Center accession, and a descriptive name of the
Stock, as computed daily from a list of the variations associated with the Stock.

2. Real-time -- with user constraints.

Example 1.

Map Scores by the BIN: user selects (1) the bin range, (2) the Mapping Panel of
Stocks, and (3) format of product returned (hypertext, or comma-delimited). Data for
this table are read from the Locus#Coordinates, and MapScores tables.

Map Scores for loci between bins 1.01 and 1.12 using Mapping Panel 57244

157

* hyper-text linked to MaizeDB entity

Example 2.

Formatted Person address. Constraint options are the city and or the person's last
name. Data may be returned in a choice of 3 formats: (a) address only, (b) address
and phone, as required for FedEX, or with (c) address, Email, phone and fax. Data
for the below example are read from the Person, Person#PhoneNos and
Persone#EMailAdresses tables.

City="Urbana", and format c, above; only one of the 18 addressed returned is
shown:

Marty Sachs
USDA/ARS
S108 Turner Hall
1102 S. Goodwin Ave
Urbana IL 61801

(217)244-0864/333-9743lab
(217)333-6064 (fax)
msachs@uiuc.edu
(verified May 7 1998)

3. Computed periodically, no curator intervention.

Table of Core Marker information is automatically computed each week. The table
content was defined by the UMC RFLP laboratory. Core markers are loci that define
the edges of the bins on the consensus map; this map is curated by Ed Coe, at
Missouri, with MaizeDB staff assistance.

Data are read into the output table from the Locus#Coordinates, Probe and
Probe#Comments tables, as restricted by the a property 'Core Marker', stored in the
Locus#Properties and Probe#Properties tables as two independent controlled
vocabularies.

158

Sample rows:

*hypertext-linked to MaizeDB entity.

4. Periodically computed, -- coordinated with curator action.

The printed 1993 MNL Gene List (volume 67) was the first Gene List extracted from
the database. The Gene List is a complex table, with the symbol, the bin location, the
full name, a brief comment, putative or confirmed gene products and key references
for selected loci. Hypertext links are provided to the MaizeDB Locus, Gene Product
and Reference entities. Curatorial review:
(1) checks that all appropriate loci are included, by examining the list of excluded
maize loci of type="Gene" where there is no '*' associated with the name; (2)
ascertains that the full name, the brief comment, any gene product(s) and appropriate
references are updated; (3) monitors comments entered into the database for errors,
completeness and currency. Creating the Gene List requires reading data into 3 de
novo tables (genes, geneP, MNLGeneRefs) from several MaizeDB tables (Locus,
Locus#Coordinates, Locus#Comments, Locus#GeneProducts, Anything#References,
References). The only constraints are the Locus Property, MNL GeneList and the
reference Annotations, First Report or Gene List.

Two sample rows.:

bt1, bin(s) 5.04, brittle endosperm1, mature kernel collapsed, angular, often
translucent and brittle (alleles sh3, sh5), may encode amyloplast adenylate
translocator ref 466, 867

pl1, bin(s) 6.04, purple plantl, PI1 plant tissues have light-independent pigment, pl1
blue light-dependent; PI1-Bh1, colored patches in c1 aleurone and in plant;
transcriptional activator for flavonoid genes; SSR phi031, nc009, nc010 ref: 215,
216.

159

DISSEMINATION TO EXTERNAL DATABASES

Linking information is provided to SwissProt, to GRIN, and to EMBL, and to the
Entrez-Genome division associated with GenBank. Mapping coordinates are placed
into our public ftp file, and the Entrez-Genome division is notified when there is an
update. The AceDB format for the database is submitted to the central server for
Plant Genome Databases at the National Agricultural library.

FUTURE DIRECTIONS

The Plant Genome Database suite maintained by the USDA-ARS, and others both in
the US and international locations are looking towards combining sequence
computation with graphical displays of data return that can represent both intra- and
inter-specific data. Inter-specific genome and germplasm queries will be greatly
enhanced by access to common controlled vocabularies, and metabolic databases,
both inter-plant and inter-all-genomes. At MaizeDB, we anticipate enhancing user-
access to the data using menu-driven, user-defined table constructions. Instead of
retrieving a list of loci with tassel phenotypes, one might specify a list of the loci, any
PCR primers for nearby sites, gene products, GenBank accessions, the map bins. In
the near future, we anticipate an onslaught of highly structured data from enhanced
funding for crop plant genomes, both US and international.

REFERENCES:

1. Emerson, R. A. 1923 Letter. from files of E. H. Coe, University of Missouri-
Columbia MO 652 1 1.

Emerson, R.A., Beadle, G. W. and A. E. Fraser. 1935. A summary of linkage
studies in maize.Cornell Univ. Agric. Exp. Stn. Memoir 180:1-83.

Letovsky, S. and M. Berlyn. 1994. Issues in the development of complex
scientific databases. Proceedings of the 27th Annual Hawaii International
Conference on System Sciences.

Byrne, P. F., M. Berlyn, E.H. Coe, G. Davis, M. Polacco, D. C. Hancock 1995.
Reporting and accessing QTL information in USDA’s Maize Genome Database.
J. Quant. Trait Loci 1995:1-3

2.

3.

4.

160

APPENDIX 1: Fragment of Genera specifications for the Short Locus Query Form

All fields listed, but only certain ones shown for query. 'Query select' option
provides a menu to the user of the available options. The forms are 'freshened'
overnight and new options will appear at that time.

LocusLite
*ID#: integer

-key
-noquery
Column: ID# Locus ID#

*Name: char
-lookup
-noquery

-listsinglecolumn
'Synonym: char

*Symbol, Fullname, or Synonym:

Column: ID# Locus#Synonyms Synonym
-match

Column: ID# Locus#Synonyms Authority
-noquery

'Per: Person

*Type: Term

*Fullname: char

*Species

*Detected By:

Column: ID# Locus Type
-queryselect

-noquery

-queryselect

*Probe

'Method: Term
Column: Locus Locus#DetectedBy Probe

Column: Locus Locus#DetectedBy Method
-queryselect

*Gene Products: setof Gene Product
Column: Locus Locus#GeneProducts GeneProduct

*Linkage Group
Column: LinkageGroup
-queryselect

Map Scores: setof Map Scores
Column: ProbedSite Mapscores ID#
-noquery

*Recombination Data: setof Recombination Data
Column: Locus RecombinationData#Loci RecombinationData
-noquery

-queryselect
*Arm: Term

...

161

Appendix 2: part of the Query Form generated from the above specification.

162

Appendix 3: Detail display fragment for the wxl waxy 1 locus, also generated
according to the specification in Appendix 1.

LocusLite wx1 waxy1
ID#:12768
Name:wx1
Symbol,Fullname,or Synonym

umc25
umc25(wx)
WX1 Canonical Name
Gss1 Plant-Wide Name
waxy1 Full Name
phi022 Senior, L
phi027 Senior, L
phi061 Senior, L
npi16-wx1 Wright, S
gsy200(WX) INRA

Type: Gene
Fullname: waxy1
Species: Zea mays ssp. mays
Detected By

Probe Method
p-pBF225 RFLP Hybridization
p-umc25 RFLP Hybridization
p-phi022 P CR-SSR
p-phi027 PCR-SSR
p-phi061 PCR-SSR
p-pBF224 RFLP Hybridization

RFLP Hvbridization

Synonym Per

14 AGIS: USING THE
AGRICULTURAL GENOME

INFORMATION SYSTEM

Stephen M. Beckstrom-Sternberg * and D.
Curt is Jamison**

Department of Plant Biology, University of Maryland,
College Park, MD

* Present Address: NIH Intramural Sequencing Center,
Advanced Technology, Center, National Institutes of

Health, Gaithersburg, MD 20877 (stevebs @ nhari .nih.eov)

** Present Address: National Human Genome Research
Institute, National Institutes of Health, Bethesda, MD.

20715 (cjamison @nhg ri. n ih.gov - co rresponding author)

Introduction

The Agricultural Genome Information System (AGIS – http://probe.nal.usda.gov/)
provides Internet access to genome information from agriculturally important
organisms. The server delivers information from thirty-six databases, encompassing
mostly crop and livestock animal species, including the databases for all of the major
food crop genome projects. Also included are a number of databases which have
related information, such as databases for several model organism genome projects
(including ACeDB for the nematode, Caenorhabditis elegans, and DictyDB for soil
amoebae, Dictyostelium discoidium), reference databases such as Mendel (plant gene
nomenclature), PhytochemDB (plant phytochemicals), EthnobotDB (plant uses), Fire
Ant, and OMIA (Online Mendelian Inheritance in Animals), as well as links to other
important resources like AGRICOLA. A complete list of databases is shown in
Table 1.

164

Table 1 : AGIS Databases

Plant Genome

AAtDB--Arabidopsis
Alfagenes--alfalfa (Medicago sativa)
BeanGenes--Phaseolus and Vigna
Cabbagepatch-- Brassica
Chlamy DB--Chlamydomonas reinhardtii
CoolGenes--cool season food legumes
CottonDB--Gossypium hirsutum
GrainGenes--wheat, barley, rye and relatives
MaizeDB--maize
MilletGenes--pearl millet
RiceGenes--rice
RoseDB--Rosaceae
SolGenes--Solanaceae
SorghumDB--Sorghum bicolor
Soy Base--soybeans
TreeGene--foresttrees
Mendel--plant-wide gene names

Livestock Animal Genome

BovGB ASE--Bovine

PiGB ASE--swine
SheepBASE--sheep
OMIA--Online Mendelian Inheritance in Animals

ChickGBASE--poultry

Other Organisms Genome

ACeDB--C. elegans
DictyDB--The soil amoebae Dictyostelium discoideum
MycDB--Mycobacteria
PathoGenes--fungal pathogens of small-grain cereals
RiceBlastDB--the rice blast fungus Magnaporthe grisea

Plant Reference

AGRICOLA--plant genetics subset
CIMMYT--Wheat International Nursery Data
Ecosys--plant ecological ranges
EthnobotDB--worldwide plant uses
FoodplantDB--Native American food plants
MPNADB--medicinal plants of Native America
PhytochemDB--plant chemicals
PVP--Plant Variety Protection
PVPSoy--Soybean Plant Variety Protection Data

Insect Reference

Fire Ant--Solenopsis
Face Fly--Musca autumnalis

165

Horn Fly--Haematobia
Screwworm--Cochliomyia hominivorax
Stable Fly --Stomoxys calcitrans

AGIS uses the World-Wide Web (WWW) technology to distribute
information. Any person with a forms-capable browser can access the databases.
The forms interface was kept as simple as possible, using only standard HTML
commands, so as to maintain compatibility with as many WWW browsers as
possible. All current versions of Netscape browsers (Navigator and Communicator)
work, as does Internet Explorer and even old versions of Mosaic.

Implementation

ACEDB, the genome database developed for use with the C. elegans genome project
[1], is used as the back-end. While other commercial database systems were initially
considered, ACEDB is the de facto standard for genome projects. Thus, by using
ACEDB, data compatibility with the AGIS collaborators was maintained.

Genome data delivery from AGIS has evolved, keeping pace with new
computer technologies. Originally, information was distributed on the Internet by a
Gopher server [2], and by CD-ROM for researchers who had no Internet access.
Both methods were discontinued as AGIS was migrated to the World-Wide Web by
the use of a highly modified ACEDB program [3], which generated static HTML
pages for text displays and GIF images for graphical maps. The current, more
interactive WWW interface is provided by a package called webace [4], which
utilizes forms-based HTML pages to provide more access to ACEDB functions, such
as the Query by Example and Table-maker facilities, as well as interactive GIF
images.

The architecture of AGIS is shown in Figure 1. The databases are
incorporated into the aceserver layer, which runs as an inetd daemon using RPC calls.
The aceserver is a modified form of ACEDB, and includes the giface program, which
turns ACEDB graphics into GIF images suitable for use by webace.

166

Figure 1 : AGIS Architecture

The webace program is a PERL script that runs as a CGI program, utilizing
the CGI.pm PERL module. Webace translates user queries into the ACEDB query
language, and then converts ACEDB objects into HTML documents for display.
HTML links are created by a set of simple markup rules [5], and can insert URL
anchors which point to other ACEDB objects, external database queries, or even
external analysis programs like the NCSA Biology Workbench [6].

Guided Tour of the AGIS Databases

From the main AGIS, menu (Figure 2), the user can access the list of available
databases by following the “Databases” link. Databases are grouped according to
type (plant, livestock, model organism, and reference). Following each of the
database listing is a set of links (browse, query, about), shown in Figure 3, which
allow the user to jump to the particular HTML forms set to access data from that
particular database.

167

Figure 2 : Main AGIS Menu

168

Figure 3 : An Example of AGIS Database Links

There are two basic access methods for the plant genome data in AGIS: 1.)
Browsing interface; 2.) and Query interface. Each method has advantages and
disadvantages, and the interface of choice will be strongly dependent upon both the
data desired and the familiarity of the user with ACEDB. Database access is
restricted to single databases at present -- no concurrent or cross-database querying is
supported. The following sections present the three interfaces arranged by
complexity and power. Finally, a section on the hypertext ACEDB objects is
presented.

Browse Mode

For novice users, the browse mode is certainly the simplest interface. Browse is a
point and click interface which allows the user to wander through the data in a
completely hyper-linked mode. A problem with this approach is the complexity and
amount of the data can be overwhelming. Still, using the browse mode allows the
user to avoid the complexities of the ACEDB query language.

Selecting the browse mode presents the user with a form listing the available
classes in the database. The available classes choice page for the RiceGenes database
is shown in Figure 4. Selection of a class (in this case Locus) presents the user with a
list of all objects available for that class. When there are too many objects to be
comfortably listed, the list is collapsed into a set of sublists. Selecting a sublist
(Figure 4) brings up a shortened list of all objects in that particular range. The user
always has the option to import the entire list.

Selection of an object from the final list retrieves a hypertext version of the
object, as described below.

169

Figure 4 : Available Classes and Sublist Selection Pages for RiceGenes

Query Mode

Selecting query mode brings the user to a form allowing the databases to be
searched/queried by six different methods, including fuzzy search, WAIS, Query by
Example, Query Builder, Table-maker, and ACEDB Query Language in which an
ACEDB query can be input directly.

ACEDB query. This mode is extremely fast and efficient for data retrieval, but it
does require the user to be familiar with the ACEDB query language as well as the
data structure of the particular database. While these two topics are outside the scope
of the current paper, the reader is referred to several excellent treatises on the
ACEDB query language [7,8], available at the AGIS site.

170

Figure 5 : ACEDB Query Interface

Figure 5 shows the basic ACEDB query interface. The query is typed into
the form and submitted, and a hypertext ACEDB object is returned.

Fuzzy (AGREP) and WAIS query. The fuzzy and WAIS modes present the
simplest query interface. One or more words can be entered as the search string, and
wildcards are accepted. A search returns a hypertext list of database objects.

Query by Example. This mode allows the user to query one class of a database by
typing search strings into one or more field categories on a form. The query brings
back a list of matching objects. Figure 6 shows the Query by Example interface to
the GeneFamily class of the Mendel database.

171

Figure 6 : Query by Example and Query Builder interfaces

Query Builder. The Query Builder interface allows much more complex queries
than Query by Example, permitting the user to string together any number of “and”,
“or”, and “xor” queries together for a particular class from a database. Figure 6
illustrates the Query Builder interface for the GeneFamily class of the Mendel
database.

Table-maker Mode. The most powerful method of accessing data from ACEDB
data is the Table-maker program. Table-maker allows the user to create a relational
database style table of ACEDB objects. Like the query interfaces, Table-maker
requires an understanding of the structure of the database. However, the challenge of
acquiring this knowledge is more than made up for in improved information retrieval.

The AGIS interface to the ACEDB Table-maker utility is shown in Figure 7.
Table-maker works by making an initial query, then applying modifiers and
performing “follow” operations, which can be thought of as automated linking
operations between objects.

A nice tutorial for Table-maker can be found at the AGIS web site [9].

172

Figure 7 : Table-maker Interface

Hypertext ACEDB objects

Regardless of the mechanism used to initially query the database, an ACEDB object
is the ultimate goal of interacting with the databases. A typical ACEDB object is
shown in Figure 8. The object looks very similar to a native ACEDB object, with
links to other objects represented as hyperlinks. Following such a link will replace
the current object by following the link.

173

Figure 8 : Hypertext ACEDB Object and ISMAP from RiceGenes

One salient difference between native ACEDB objects and those presented
by the AGIS system is that while ACEDB objects launch multiple viewing types
(e.g., maps, text, images), the default type of any object returned by the AGIS system
is text. At the top of each object is the “View as Graphic” link, which invokes the
GIFace server and returns a clickable ISMAP graphic (Figure 8). While mildly
annoying to those looking specifically for graphical views, the text orientation of the
AGIS server was a conscious decision designed to conserve bandwidth and avoid
burdening users who have slower network connections with unwanted graphics.

The Future of AGIS

New technologies bring new opportunities to improve service, and the providers of
AGIS have always striven to make use of as much state-of-the-art technology as
possible. One such new technology is the Java programming language which allows
interactive viewers and programs to be downloaded across a WWW link. JAVA
holds promise to improve the AGIS interface, allowing it to be much more interactive
and responsive than permitted by standard HTML forms.

Jade is the Java version of ACEDB [10]. A new experimental AGIS server
has been created, with small modifications to the basic Jade structure to give it a
familiar look and feel. While the basic interactions are similar to the WWW version,
the Java map viewers are a great improvement. Additionally, the Java version for the
first time holds forth the promise of concurrent database queries and cross-species
comparisons performed directly from the AGIS servers.

174

Acknowledgments

AGIS is the product of many talented people, including J. Barnett, D. Bigwood, S.
Cartinhour, G. Juvik, J. Krainak, T. Le, J. Martin, M. Shives, M. Sikes, and D. Vo.
AGIS is a cooperative effort between the USDA Plant Genome Initiative and the
University of Maryland, and is housed by the USDA National Agriculture Library.
This work was supported by the USDA-NGRP National Plant Genome Research
Program.

References

1. Durbin, R. and J. Thierry-Mieg (1991-). A C. elegans Database.
Documentation, code and data available from anonymous FTP servers at
lirmm.lirmm.fr, cele.mrc-lmb.cam.ac.uk and ncbi.nlm.nih.gov.

2.

gopher://boombox.micro.umn.edu:70/00/gopher/gopher_protocol/protocol

3.
moulon.inra.fr in /pub/www acedb .

4. Barnett, J.D. and D.W. Bigwood (1996). WWW interface to ACEDB, available
at, ftp://probe.nal.usda.gov/pub/tools/webace.tar.gz

5. Barnett, J.D., D.W. Bigwood, and S. Cartinhour. (1995). A World-Wide Web
Server for ACEDB based on Tace, available at
http://probe.nalusda.gov:8000/acedocs/ace95/nalwww. html
6. Unwin, R., J. Fenton, M. Whitsitt, D. C. Jamisom M. Stupar, E. Jakobsson and
S. Subramaniam “The Biology Workbench: A WWW-based Virtual Computing and
Analysis Environment for Macromolecular Structures and Sequences.” (this volume).
7. Matthews, D, and S. Lewis. 1995. Searching an ACeDB database, available at
http://greengenes.cit.cornell.edu/acedoc/query.syn.html
8. Barnett, J. 1995. ACEDB Query Language Examples, available at

http://probe.nalusda.gov:8000/acedocs/aceqery_examples.html .
9. Barnett, J. 1995. Introduction to Table-maker on the WWW, available at

http://probe.nal.usda.gov:8000/acedocs/cimmyt workshop/table-maker.html .
10. Stein, L., J. Thierry-Mieg, S. Cartinhour. Jade paper (this volume).

Alberti, B., F. Anklesaria, P. Lindner, M. McCahill, and D. Torrey (1991). The
Internet Gopher Protocol, available at,

Decuoux, G. (1995). A webserver for ACEDB, available by ftp from

15 CGSC: THE E.COLI GENETIC
STOCK CENTER DATABASE

Mary
K.B. Berlyn

E. coli Genetic Stock Center, Dept. of Biology, 355 OML, 165 Prospect St.
New Haven, CT 06511

Introduction

The E. coli Genetic Stock Center was founded 25 years ago for the purpose of
collecting and distributing useful genetic derivatives of E. coli K-12 made by and
used for teaching and research by geneticists, molecular biologists, biochemists, and
others in academic, medical, government and industry laboratories. Historically, the
Stock Center had never aspired to be a broad informatics resource, but in fact a full
and accurate description of experimental strains and information needed for effective
use of the strains involves detailed descriptions of the genotype, and in many cases
phenotypic characteristics resulting from the genotype, of mutations and their
properties, of gene function (the RNA and polypeptide gene products and also
phenotypically defined functions), of gene map locations, and also of supporting
information on pedigrees, references, people contributing and using strains, and
feedback on strain phenotype. Over 7500 strains have been officially accessioned
into the stock center over the years and about 4000 of these are part of the current
working collection. Many of the strains contain 12-25 different mutations. As a
result, the database includes over 3700 distinct mutations, over 2200 genes, with
information on their organization into several hundred operons, about 600 sites of
insertion for transposon mutations, prophage integration, etc., replication origins and
termini, identification of 1400 RNA or protein products encoded by the genes, and
8000 references documenting genes, gene products, or strains. See
http://cgsc.biology. yale.edu.

Development and Features of the Database

176

For 20 years, this information was held in very organized format by a single curator,
Dr. Barbara Bachmann, but in the form of cross-referencing filecard catalogs,
notebooks containing pedigree diagrams, genotype descriptions, gene and gene
function tables and allele information, and also, informal notes and human memory.
Because of its role in tracking genes and alleles, the stock center has also taken on
the task of registering alleles and of publishing the linkage map for E. coli K-12 since
1976 (e.g., 1-4). Converting this information to electronic form was a task begun in
1989 as a two-phase development that was functional, in terms of software and
essential data entry, in early 1990. A major imperative for this was the need to
ensure the continuity of the stock center into the future, and the crucial need to
modernize the records as part of this process had been recognized by program and
division officers at the supporting agency, the National Science Foundation, for some
time. The structured and generally consistent nature of the record-keeping that had
evolved during those 20 years, the clear mission of the stock center, the observable
patterns of usage of the various types of data, and the absence of a pressing deadline
for completion facilitated a user's needs and dataflow analysis that led to conceptual
and data models. We wanted the robustness of a commercial relational database
management system and eventually chose Sybase from among those available, while
keeping the model itself 'object-oriented'. Some schema modifications occurred
during the implementation phases (with Stan Letovsky the sole software developer
for a rapid development and testing process), but the resultant database bore a
striking, perhaps surprising, resemblance to the early plans.

Several aspects of the conceptual data model had either not been included in models
of other databases or were distinctly different from other treatments. Any segment of
the canonical (wildtype) chromosome was modeled as a "Site" (alias locus). This
includes genes, control regions, intergenic and intragenic regions, groups of genes,
including operons, segments of the chromosome that were deleted, inserted, or
inverted in structural mutations. Every site has a left endpoint and a right endpoint.
Thus overlaps between the end of one gene and the beginning of another or inclusion
of a regulatory region within an adjacent gene could be described and detected in
searches. The coordinates for these points can have multiple values, reflecting
different map versions, with the current version, of course, setting coordinates
according to completed nucleotide sequence for E. coli K-12 (5). Sites can have
"subsites"; e.g., all the genes carried on a deleted or inverted segment are subsites of
the segment, and genes within an operon are subsites of the operon, with each subsite
also being represented as an independent site. Since there was a single isolate of K-
12 that is considered to be THE "wildtype", the structure and sequence of this
wildtype chromosome can be used to define the standard chromosome (genome), and
deviations from this structure can be described as mutations of the wildtype. Only
mutations need be described in presenting the genotype of a strain; this is the
convention followed by geneticists since the earliest days of the field. It is important
in the database structure, since properties that belong to the gene itself can be

177

described once for that gene and need not be repeated for all the various mutations of
that gene. In the database, every mutation is linked to a Site in the relationship
Mutation OF: Site, and for intragenic changes, the mutations are alleles OF a gene;
for structural mutations, they are, for example, deletion-type mutations OF a
"chromosomal region''-type site.

Since we did not wish to be redundant in providing information already available in
existing databases, we chose to make links between the CGSC Sites and sequences in
GenBank, between CGSC References and Medline records that include abstracts, and
between Gene Products and Enzyme Commission and SwissProt databases. This was
a pre-WWW decision and fortunately, the development of first Mosaic and then
Netscape and other browsers and the resultant expansion in Web use and
convenience validated this as a workable strategy.

Re-usable parts of the project

In a sense parts of the data model can be considered "re-usable'' parts of the project,
since discussions of this model were influential in adoption of similar, but modified
models for aspects of both the Maize Genome Database (6) and its component Maize
Stock Center information and the Arabidopsis Information Management System (7)
at the Arabidopsis Biological Resources Center. Work with the maize database
group at the University of Missouri gave impetus to the development of Stan
Letovsky's Genera software (8) which has allowed development of a Web interface
and easy modification methods for the database. Genera also has been used for
creation of other databases with Sybase backends and Web frontends (e.g., Field
Guide to Puerto Rico by Todd Forrest, ref. 9), so this is a re-usable spinoff from the
initial database projects.

Query Examples

Probably the most used, most valuable, and most distinctive query used by public
users on the web and by stock center personnel either on the web or on the aptforms
is looking for all strains that have specific combinations in their genotype. For
example, a strain that carries an F-factor, and is restriction-negative (hsdR• and RecA-

, [or carries specific auxotrophic markers] can be found by selecting F+, F', and Hfr
in the Sex field of the Strain Query form and entering the gene symbol or mnemonic
for the type of allele being sought in the Mutations field. This is shown in Figure 1.
The upper left section illustrates the Strain Query form and the appropriate entries,
to the right, the list of strains retrieved from that query and the below, the description
on the Strain form of the strain selected from the query result.

178

Another kind of query is illustrated, accessible from the Aptforms interface, is shown
in Fig. 2 It asks for a strain that carries a lacZ amber suppressible mutation and is
lacI and also for a strain that is isogenic to this strain, except for the lacZ marker.
This is a complex, but frequently needed query for experimentalists, and it is
facilitated by furnishing a field entitled "Isogenic with respect to mutation:" Fig. 2
shows the entry for the query and the list of strains that have the required markers and
also have an isogenic partner in the collection. After browsing the genotypes of the
retrieved strains, the user may select one or both; the description of the selected
strain is shown and the arrow indicates the "Isos!" command which retrieves its
isogenic partner as well. The "Report" function formats the retrieved strain
descriptions in a more formal way, shown at the bottom of the figure.

179

FIGURE 1. A Query for an hsdR- recA strain also having an F-factor

Strain Query

CGSC#:
Strain Designation

Retrieve Clear Help,

Designation SourcePerson

Sex(Hfr,F+,F-, or F'):
PO#: PO_Map Position: +/-
POisClockwise(1=CW,0-CCW):
Episome:

No. of Muts Carried:
Special Uses: [select list offered]
Comments:
External DB Keys:
References:

2 items retrieved
DH20 DH21

[select DH20]

Strain: DH20
CGSC#: 6818
Designation: Source Person Choice
DH20 Hanahan, D. 1
Episome: F128-18
Mutations Certainty

glnV44(AS)
lambda
rƒbD1
gyrA96(NalR)
recA1
relA1
endA1
spoT1
thi-1
hsdRl7

No. of Muts Carried: 10
Comments: This F-prime comes from the strain X91, which carries a derivative of F128-10
that was designated F128-17. F128-17 & F128-18 are probably the same F', extending from
(proB-lac) and carrying lacIp-4000(lacIQ). NalR=nalidixic acid resistance.
Reference: with
plasmids. J.Mol.Biol. 166.557-580.

Hanahan, D. 1983. Studies on transformation of Escherichia coli

ID#: 7408

Mutations

180

In this query "Amber" is a mutation property, and certain properties, such as
constitutivity or nonsense suppressibility (e.g., Amber) are such distinctive properties
that traditionally a symbol is parenthetically appended to the mutation designation.
This convention fortuitously provides a shortcut for this query. It is not necessary to
"subquery" on the Mutation form to specify the property, but only to enter it as part
of the name, "laclZwildcard](Am)". The retrieval on these forms also illustrates
another feature of the database. Some comments (shown as Type Inherited on the
form) are Mutation Comments, inherited by all strains carrying that mutation. Also,
the definition of the Mutation property (Am) is inherited by the Strain form.

Other common queries are for strains that carry a specific mutation with a transposon
or other selectable marker nearby; a strain that carries a mutation and is an Hfr that
transfers that mutation early in a mating; a combination of mutations in two or more
specific genes; or a strain that lacks a specific enzyme. These are easily carried out
by users familiar with the genetics of E. coli.

A current version of the traditional linkage map ("stick-and-tick" representation) can
also be accessed from the web, as drawings of 2-minute segments from the web site,
or as an ordered list of genes and coordinates drawn directly from the database.

Quality Control and Curation

Because we were confronted with so much data entry from paper files, we initially
emphasized triggers and tools that attempted to facilitate and ensure data integrity for
entries and updates, and these have served us well in maintaining quality control and
in the curation process.

We attempted to circumscribe the content of this database, so that the part-time
attention of one or two people could accomplish curation of the "primary data", and
access to important related data would be provided by links to other data

181

FIGURE 2. A Query for a lacZ-(amber) lacI-- strain, with no amber suppressor, and
an isogenic lacZ+ strain

STRAIN
Select! Sub! Clear! Go! Clone! Report Pedig! Isos!
[?] ID#: CGSC# Designation Choice Source

Sex:
Episome: Via Use
Mutations --------------- --------------------

Isogenic w.r.t. mut:
Comment:

References: Author Year Journal Vol. Page Priority

STRAIN
Select! Sub! Clear! Go! Clone! Report Pedig! Isos!

[!] ID#: 7668 CGSC# 4977 Designation Choice Source

Sex: Hfr CA86 2 S.Brenner
PO: valS < attP4 Via Use
Episome:
Mutations

3.300 U281 1 Paris

Mutation Type Comment
lacZ281(Am)
lac122
LAM-
relA1 in strain 3.300 Hfr.
spoT1 Inherit lacZ281 was formerly called lacZu281.
thi-1 Inherit Am = amber mutation

Author Year Journal Vol. Page Priority
Pardee et al. 1959 J.Mol.Biol. 1 165 1

Inherit lac122 was formerly called lac, 3 by Jacob; it originated

References:

Isos! and Report!

CGSC Strain # 4977

Sex: Hfr
Chromosomal Markers:

Comments: lac122 was formerly called laci3 by Jacob; it originated in strain 3.300
lacZ281 was formerly called lacZu281. Am=amber(UAG) mutation
Reference: Pardee et al. 1959J.Mol.Biol. 1:165

CGSC Strain #808
Sex: Hfr
Chromosomal Markers:

Comment: lac122 was formerly called laci3 by Jacob; it originated in strain 3.300

Strain designation: 3.300 U178
Other Designation: CA86 S.Brenner

Point of Origin 1 of Hfr 3000 valS--<--attP4

lacZ281(Am), lacI22, I-, relA1, spoT1, thi-1,
Hfr.

Strain Designation: 3.300
Point of Origin 1 of Hfr 3000 valS--< attP4

lacI22, I; relA1, spoT1, thi-1
Hfr.

182

sources --- sequences (GenBank), bibliography abstracts (Medline), and more
detailed enzyme information (Enzyme Commission database and SwissProt). This
choice reflects the fact that the stock center has always operated with a small staff,
usually director, two laboratory research assistants, some part-time help with data
entry and editing, and with the advent of the database, a part-time systems
administrator, and the database is only an ancillary part of the stock center's
functions. The body of data, however, expands and needs modification at a rate that
exceeds our modest plan. We need to adjust our curation model to accommodate
this.

Lessons learned and improvements obvious in hindsight

One of the positive lessons was that one biologist beginning at ground level in
database experience and one computer scientist with interest and knowledge in
biology can work together to accomplish a lot of database functionality in a short
time.

On the negative side, I would, in hindsight, pay more attention to external use of the
database from the outset. The initial development definitely focussed on in-house
use because that was the most critical need and because external use was not favored
by the then-director of the stock center. Subsequently, we have found external access
by users to be extremely helpful and efficient both for users and for stock center staff.
The ability to provide a Web interface to the database (10), thanks to the Genera
software (8), has done a lot to increase satisfaction of outside users. Yet there are
many useful features that we use daily with the in-house aptforms that are not yet
available to web users. There are ways that we can accommodate some of these
features, even within html limitations, but they have not all been attended to. Among
the things I would do differently would be to ensure that external users had access to
these more powerful querying capabilities from the outset (although certain parts of
the database, such as request-forms and strain-maintenance records, would still be
excluded from the public part of the database, since they seem irrelevant to external
users' information needs). Also, of course, we would develop more extensive user
documentation.

External use is also related to curation capabilities. Unexpectedly, being on the web
has given us a volunteer corps of proofreaders. Many users are experts in areas of
biochemistry or genetics and send us corrections on very specific aspects of the data.
It has been suggested by some outside users that there be public access to:
(a) a write-in adjunct to the database to allow researchers to add expert knowledge,
and corrections, that will become appended to the record and available to anyone
examining the record.
(b) allowing some SQL-query capability (non-forms).

183

These are suggestions that deserve serious consideration. However, the rate of daily
use, and the fact that most scientists requesting strains indicate that they have
successfully examined the database on the web prior to asking for strains or further
information, very often finding the specific strain they need, has convinced us of the
usefulness of the database in providing strains to the research community.

Acknowledgments

In the planning process, I was extremely fortunate to have the help and
encouragement of program and division officers then at the National Science
Foundation, including Drs. Robert J. Robbins, James Edwards, and John Wooley,
Drs. Gerald Selzer, David Kingsbury, and others. A CGSC database advisory group
also provided valuable help in the early planning and modelling phase and this group
included Drs. Jim Ostell of NCBI, Tom Marr then at LANL, Ken Sanderson of U.of
Calgary, Brooks Low of Yale, and R. Robbins then of NSF, upon occasion
augmented by other software experts. I am also fortunate that the software developer
for the project was Stan Letovsky, and Peter Kalamarides is systems administrator.
The richness and availability of a very large segment of the data are the result of the
dedication and expertise of Barbara Bachmann, during her long tenure at the Stock
Center. I'm grateful for the insights and suggestions of research assistants Linda
Mattice and Narinder Whitehead, who have become major users of the database in
their daily activities, and for those of scientists whose more occasional use also led
them to offer criticism, suggestions, and requests for improvements. This work was
supported by the National Science Foundation.

References

1. Bachmann, B.J., Low, K.B., and Taylor, A.L. Recalibrated linkage map of
coli K-12. Bacteriol. Rev. 40:116-167 (1987)
2. Bachmann, B.J. Linkage map of Escherichia coli K-12, edition 8. Microbiol. Rev. 47:180-
230 (1 990)
3. Berlyn, M.K.B., Low, K.B., and Rudd, K.E. . Linkage map of Escherichia K-12,
edition 9, p. 1715-1902. In F.C.Neidhardt, et al. editors, Escherichia coli and Salmonella :
cellular and molecular biology,
4. Berlyn, M.K.B. Linkage map of Escherichia coli K-12, edition 10. In
Microbiology and Molecular Biology Reviews. (Sept. 1998)
5. Blattner, F. et al., The complete genome sequence of Escherichia coli K-

6. http://teosinte.agron.missouri.edu/top.html
7. http://aims.cps.msu.edu/aims/
8. Letovsky, S. Genera: http://cgsc.biology.yale.edu/genera
9. Forrest, T. http://cgsc.biology.yale.edu/newfield.html
10. Berlyn, M. http://cgsc.biology.yale.edu
11. Berlyn, M. Accessing the E. coli Genetic Stock Center Database. p. 2489- 2495. In
F.C.Neidhardt, et al. editors, Escherichia coli and Salmonella : cellular and
molecular biology, 2nd ed. ASM Press,

Escherichia

coli

2nd ed. ASM Press, Washington DC (1996)
Press.

12. Science
277: 1453-1474 (1997)

Washington DC (1996)

This page intentionally left blank.

SYSTEMS

This page intentionally left blank.

16 OPM: OBJECT-PROTOCOL
MODEL DATA MANAGEMENT

TOOLS ' 97

Victor M. Markowitz, I-Min A. Chen, Anthony
S. Kosky, and Ernest Szeto

Data Management Research and Development Group
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Introduction

The development of the Object-Protocol Model (OPM) and OPM data management
tools started in 1992. The main motivation for developing OPM at the time was the
need to provide data management support for large scale DNA sequencing
laboratories. We designed the protocol class as a construct for modeling sequencing,
as well as other scientific, experiments. Since object-based data models were well
suited for modeling the complex data underlying the scientific and traditional
database applications targeted by OPM, we decided to incorporate the protocol class
construct into the framework of an object data model [2].

The development of the OPM data management tools can be split into three
stages. Initially, the OPM data management tools aimed only at providing wrapper
facilities for developing and querying individual databases implemented with
commercial relational database management systems (DBMSs). The OPM Database
Development and Database Query tools provided such facilities, first for Sybase and
later Oracle, both widely used for implementing large production biological
databases. These tools were employed for developing and maintaining several
biological databases, such as version 6 of the Genome Data Base (GDB)' at Johns

* Current affiliation: BIOINFORMATICS SYSTEMS, GENE LOGIC, INC., 2001 Center Str., Suite
600, Berkeley, CA 94704.
Email: { vmmarkowitz, ichen, anthony, szeto} @ genelogic.com
¹ http://gdbwww.gdb.org/

188

Hopkins School of Medicine in Baltimore, and the Primary Database of the German
Human Genome Resource Center (RZPD)² in Berlin, Germany.

Next, the OPM Retrofitting tools were developed in order to provide support for
constructing OPM views for databases that were not originally developed using the
OPM tools, and for providing the infrastructure required for using the OPM Database
Query tools to access these databases. We developed retrofitting tools for relational
DBMSs and applied them to databases such as the Genome Sequence Database
(GSDB)³ at the National Center for Genome Resources (NCGR). More recently, we
have developed retrofitting tools for structured flat files such as GenBank.4

Finally, we took advantage of the ability to build uniform OPM views on top of
diverse databases by developing the OPM Multidatabase Tools for querying and
exploring multiple heterogeneous databases via native OPM schemas or retrofitted
OPM views. These tools have been applied to the construction of a Molecular
Biology Database Federation that includes GDB, GSDB, and GenBank.

In the remainder of this paper we will briefly overview the OPM data management
tools and will discuss the experience gained in the past five years of developing and
applying these tools to scientific database applications. Details of these tools and
their underlying methodologies can be found in the OPM papers listed as references;
most of these papers are available on the Web at http://gizmo.Ibl.gov/opm.html.

The OPM project is currently at a crossroads. The OPM tools were developed by
members of the Data Management Research and Development Group at Lawrence
Berkeley National Laboratory, with funding from the Office of Biological and
Environmental Research and the Mathematical, Information, and Computational
Sciences Division of the US Department of Energy. In September 1997 the
developers of the OPM tools joined Gene Logic Inc., forming its Bioinformatics
Systems division, where the next generation of OPM data management tools will be
developed. The future versions of the OPM tools will include enhancements of
existing facilities, such as more powerful Web-based interfaces, as well as new
facilities, such as mechanisms for integrating data management and analytical tools,
and providing support for database evolution.

The Object-Protocol Model

The Object-Protocol Model (OPM) is the result of incorporating constructs for
modeling scientific experiments (protocols) into an object data model. We will
briefly review the main features of OPM below; details can be found in [1].

² http://www.rzpd.de/
³ http://www.ncgr.orglgsdb/
4 http://www.ncbi.nlm.nih.gov/

189

OPM is a data model whose object part is closely related to the ODMG standard
for object-oriented data models [10]. Objects in OPM are uniquely identified by
object identifiers, are qualified by attributes, and are classified into classes. Classes
can be organized in subclass-superclass hierarchies, where multiple inheritance in
such hierarchies is supported.

Attributes can be simple or consist of a tuple of simple attributes. An attribute can
have a single value, a set of values, or a list of values. If the value class (or domain)
of an attribute is a system-provided data type or a controlled-value class of
enumerated values or ranges, then the attribute is said to be primitive. If an attribute
takes values from an object class or a union of object classes, then it is said to be
abstract.

Figure 1 : Part of the OPM Schema for GDB

Part of an OPM schema for GDB 6, viewed using the Java-based OPM Schema
Browser, is shown in Figure 1, where the class Map is shown together with its
attributes. For example, copiedFrom, mapOf and chromosome are abstract
attributes with value classes Map, GenomicSegment and Chromosome
respectively, while minCoord and maxcoord are primitive attributes, and
includesMap is a tuple attribute with components map and orientation.

190

OPM supports the specification of derived attributes using derivation rules
involving arithmetic expressions, aggregate functions (min, max, sum, avg, count)
and attribute composition. In Figure 1, for example, attribute maps of class
Chromosome is a derived attribute defined as the inverse of attribute
chromosome of class Map. OPM also supports derived subclasses and derived
superclasses. A derived subclass is defined as a subclass of one or more derived or
non-derived object classes with an optional derivation condition. A derived
superclass is defined as a union of two or more object classes.

In addition to object classes, OPM supports a protocol class construct for
modeling scientific experiments. Similar to object classes, protocol classes have class
names, optional class descriptions, identifiers, and are associated with attributes.
Protocol modeling is characterized by the recursive specification (expansion) of
generic protocols in terms of alternative subprotocols, sequences of subprotocols, and
optional subprotocols. In addition to regular attributes, a protocol class can be
associated with special input and output attributes that represent input and output
data regarding the experiment modeled by the protocol class, and express input-
output connections with related protocol classes.

Documentation in the form of descriptions, examples, and application-specific
properties can be associated with OPM schemas as well as schema components such
as classes and attributes. Further, classes can be organized into clusters, and clusters
can be nested.

The OPM Query Language (OPM-QL) [3] is an object-oriented query language
similar to OQL, the ODMG standard for object-oriented query languages [10]. An
OPM query consists of a SELECT statement, specifying the values to be retrieved for
instantiations of variables satisfying the query condition; a FROM statement,
specifying the variables that occur in a query and the classes or attribute values which
they range over; and an optional WHERE statement specifying conditions on
instantiations, where conditions consist of and/or compositions of simple atomic
conditions. A query may also involve local, inherited and derived attributes and path
expressions starting with these attributes.

The Object-Protocol Model Data Management Tools

The OPM data management tools provide facilities for developing and accessing
databases defined using OPM, for constructing OPM views of existing relational
databases and structured files, for representing database schemas using alternative
data-models, for publishing schemas in various formats, and for querying databases
through uniform OPM views. The OPM multidatabase tools provide facilities for
exploring multiple heterogeneous databases that have either native OPM schemas or
retrofitted OPM views. We will briefly describe each of the OPM data management
tools below.

191

The OPM Database Development Tools

OPM schemas can be specified using either a regular text editor or using the
graphical OPM Schema Editor. The OPM Schema Editor is implemented in Java and
provides a graphical interface implemented using the Java Abstract Windowing
Toolkit (AWT). The tool allows object and protocol structures to be specified
incrementally by defining new OPM classes, modifying existing OPM classes and
defining attributes of classes. OPM schemas can be also examined graphically on the
Web using the OPM Schema Browser. The OPM Schema Editor and the OPM
Schema Browser provide facilities for generating Postscript diagram, LaTeX
document and HTML file representations of OPM schemas.

OPM schemas are maintained as ASCII files that can be passed to the OPM
Schema Translators described below, in order to generate the corresponding DBMS-
specific database definition and constraints.

Individual OPM schemas or several related schemas can be documented in a
Database Directory and Schema Library (DD&SL). A DD&SL contains information
on individual databases, such as database names, underlying DBMS, access
information, and the database schemas represented in OPM and other alternative
notations, such as the Extended Entity-Relationship (EER) model, the relational
model, and the ASN.l data exchange notation. In addition the DD&SL contains
information about the relationships between databases represented in the DD&SL, or
inter-database links, which can be used in exploring across databases and
formulating multi-database queries. The DD&SL is used by the Multidatabase Query
Tools described later, in order to provide the information necessary formulating
multidatabase queries. The information in a DD&SL may also be automatically
converted to a hierarchy of HTML pages, so that the DD&SL may also be browsed
using a Web browser, such as Netscape or Explorer (see [6] for details).

The OPM Schema Translator translates OPM schemas into relational database
definitions and database procedures implementing the OPM retrieval and update
methods [2]. Informally, the translation of an OPM schema into a relational database
definition entails mapping every OPM object or protocol class C into a primary
relation R. Depending on their type (primitive, abstract, simple, tuple, etc.), non-
derived attributes of C are mapped into local attributes of R, foreign-key attributes of
R, or additional auxiliary relations with appropriate foreign-key to primary-key
references. Derived OPM attributes are mapped into relational procedures that are
used for computing their values at run time. The OPM Schema Translator also
generates a mapping dictionary containing information on the OPM to relational
database mapping.

The OPM Retrofitting Tools

The OPM Retrofitting tools [5] can be used for constructing and maintaining OPM
views on top of existing flat files or relational databases that were not developed
using OPM. These tools follow an iterative strategy for constructing OPM views:

192

first a canonical (default) OPM view is generated automatically from the underlying
database schema; then this canonical OPM view can be refined using schema
restructuring operations, such as renaming or removing classes and attributes,
merging and splitting classes, adding or removing subclass relationships, defining
derived classes and attributes, and so on. A mapping dictionary records the
information regarding the relationships between the view (OPM) constructs and their
corresponding representations in the underlying database.

The OPM Database Query Tools

The OPM Database Query tools provide support for specifying and processing OPM-
QL queries over native OPM databases, generated using the OPM Database
Development tools, or databases retrofitted with an OPM view, and for browsing the
results of these queries. In addition, for native OPM databases, the query tools
support data manipulation (inserting, deleting and updating). The queries are
evaluated using OPM Query Translators which employ the information in the
mapping dictionary generated by the Schema Translator or Retrofitting tools in order
to generate equivalent queries using the query facilities provided by the underlying
DBMS or file system. For relational databases, the OPM Query Translators generate
SQL queries in the particular dialect of SQL supported by the underlying relational
DBMS, and then convert the query results into an OPM data structure.

Flat files are queried using SRS (Sequence Retrieval System) [8], a system
originally developed at the European Bioinformatics Institute for accessing archival
sequence databases. SRS parses flat files into an object structure that can be used as
the initial (canonical) schema for the OPM Retrofitting Tools, and also indexes these
files. The query facilities provided by SRS are limited to regular-expression searches
on indexed string fields and comparisons on numeric fields, and therefore OPM
queries cannot be entirely translated into SRS queries. Consequently, in order to
provide general OPM query facilities on flat files, it is often necessary to perform
further local processing of the SRS query results using the OPM Multidatabase
Query Processor described below.

Application programs can interact with the OPM query translators either via a
C++ API or by calling the query translators as Unix command-line programs. The
later can be achieved using Perl or Unix shell scripts, via temporary files for passing
OPM queries and query results.

The OPM Web Query Interface [6] has been designed to provide an extension to
the ubiquitous Web (HTML) query forms that users are already familiar with, so that
using this interface will not require learning an entirely new querying paradigm.
Instead of providing predefined query forms, the OPM Web Query Interface provides
support for constructing a query tree by selecting classes and attributes of interest
using a graphical user interface, and for dynamically generating HTML query forms

193

based on this query tree. Further query condition specification can be carried out by
filling in these query forms.

Figure 2: Constructing an OPM Query with the OPM Web Query Interface.

Query specification using the OPM Web Query Interface is illustrated by the
example shown in Figure 2, where class Gene is selected as the root of the query
tree. Attributes such as displayName, genome, mapsOf, and chromosome
are then selected from the list of attributes associated with class Gene and added to
the query tree. Next, the value classes of abstract attributes, such as chromosome,
can be selected and their attributes, for example attribute displayName of class
Chromosome, can be added to the query tree. Primitive attributes, such as
displayName and annotation, form the leaves of the tree. Once the query

194

tree is completed, an HTML query form (see the form in the lower half of Figure 2)
is generated for specifying conditions.

The OPM Multidatabase Tools

Figure 3: The OPM Multidatabase Tools

The OPM Multidatabase tools [7] provide facilities for exploring, querying and
combining data from multiple heterogeneous databases via their native OPM schemas
or retrofitted OPM views. The tools employ a Database Directory as described
above, that records the metadata needed to access databases and information about
the inter-database links.

The diagram in Figure 3 shows the architecture of the main OPM Multidatabase
tools. A Java-based OPM Multidatabase Schema Browser, similar to the OPM
Schema Browser for single databases described above, allows browsing the schemas
of multiple databases and following inter-database links. A Web-based Multidatabase
Query Interface provides support for interactively specifying OPM queries across
multiple databases using a combination of graphical Java-based tools and HTML
forms. This query interface is similar to the single-database OPM Web Query

195

Interface, except that one can first select a database from a list, before selecting the
classes that will form the query tree. The top two windows in Figure 4 show an
example of the Web query interface in use. In this example, first GSDB is selected
from the list of component databases and then class Project of GSDB is selected
as the root of the query tree. Further, the query tree may involve inter-database links
in addition to regular OPM attributes, such as GSDB_to_GDB_gene in the
example. These links are used to associate classes in different databases. Once the
query tree is completed, an HTML query form is generated for specifying conditions,
possibly involving attributes of classes from different databases (see the form in the
middle part of Figure 4). The Multidatabase Web Query Interface generates queries
in the OPM Multidatabase Query Language, OPM*QL, which are then executed
using the OPM Multidatabase Query Processor. The bottom window in Figure 4
shows a OPM*QL query equivalent to the query expressed using the Web query tools
in the other two windows.

196

Figure 4: Constructing an OPM Query across GDB and GSDB with the OPM
Multidatabase Web Query Interface.

The OPM Multidatabase Query Processor interacts with Database Servers for
each database involved in the multidatabase system. Each Database Server provides
DBMS specific query translation functions and facilities to execute single-database
queries expressed using OPM-QL. The OPM Multidatabase Query Processor
interprets OPM*QL, generates queries over the individual databases, and performs
local data manipulations necessary to combine the results of individual queries and to
provide functionality not supported by the individual databases. Since different
databases and DBMSs may support different query facilities, the queries generated
for each database are dependent on the particular subset of OPM-QL supported by
the Database Server: in general as many of the query conditions as possible are
performed by the Database Servers, while conditions which may not be tested by the
remote DBMS are evaluated locally by the Multidatabase Query Processor.

Applications and Experience

In this section, we briefly discuss typical applications of the oPM tools and the
experience we gained developing and applying these tools.

The OPM Database Development and Query Tools

The OPM Database Development Tools were first used for developing a prototype
database for a large-scale DNA sequencing project at Caltech.5 Subsequently, the
OPM Database Development and Query Tools were employed for developing and
then extending version 6 of the Genome Database (GDB) using the Sybase DBMS,
and the Primary Database of the German Human Genome Resource Center (RZPD)
using the Oracle DBMS, as well as other scientific and traditional databases. OPM
Web Query Interfaces are employed for accessing several OPM based databases such
as RZPD, while GDB is accessed via custom-built Web query interfaces.

OPM and the OPM tools helped in improving the efficiency of developing and
maintaining these databases and, to some degree, in insulating their applications from
the underlying DBMSs. As a methodology, OPM encourages and provides support
for comprehensive database documentation. Various OPM tools provide facilities
for taking advantage of this documentation during database exploration. Further, by
insulating applications and users from the underlying DBMSs, the OPM tools
simplify the task of transferring databases to other DBMSs such as object-relational
DBMSs.

5 See http://gizmo.lbl.gov/jopmDemo/shotgun.html

197

Our strategy of providing support for wrappers on top of commercial relational
DBMSs has proved to be effective. In spite of early doubts expressed in the genome
database community, relational DBMSs are widely used for implementing biological
databases, while usage of object-oriented DBMSs has been limited and problematic
(see [9] for details). The emerging object-relational (Universal Server) DBMSs, such
as Oracle 8 and the Informix Universal Servers, which represent the next generation
DBMSs, are evolving from their relational counterparts and will replace them
eventually. However, while the added functionality of these new DBMSs allows the
development of potentially more powerful databases, it also increases the complexity
of designing, implementing and querying such databases (see chapter 15 of [12]). We
believe that the OPM tools, appropriately adapted and enhanced, will continue to
provide the same advantages for databases implemented with Universal Servers as
those currently provided for relational databases.

Since keeping track of historical information is important for archival databases
such as GDB, we have incorporated a versioning mechanism into OPM. The research
underlying this mechanism, conducted in collaboration with our colleagues at GDB,
lead to interesting results [4], including the realization that the implementation of
such a mechanism in a relational database framework causes an unacceptable
overhead for large production databases.

Our work on the OPM Database Development and Query Tools has benefited
from the feedback and suggestions received from our collaborators and users.
Especially valuable has been our close collaboration with the GDB staff, including
Ken Fasman, Stan Letovsky, Peter Li and their colleagues. This collaboration helped
us cope with the peculiarities of the Sybase DBMS and proved invaluable in
improving the performance of the SQL code generated by the OPM tools. Further,
GDB staff provided suggestions for extending the OPM tools with new capabilities.
The more recent collaboration with the RZPD group lead by Brian Toussaint has also
been instrumental in improving the OPM tools.

The OPM Retrofitting and Multidatabase Tools

We have been experimenting with the OPM Retrofitting and Multidatabase Tools
since January 1996, and our experience with these is therefore more limited than with
the other OPM tools. We have applied the OPM Retrofitting Tools to several
relational databases, including the Genome Sequence Database (GSDB) and the bio-
collections database of UC Berkeley’s Museum of Vertebrae Zoology (MVZ), and to
biological flat file databases such as GenBank. Retrofitting allowed us to install the
OPM Web- Browsing and Query Interfaces on top of these databases. While more
powerful and flexible than the native Web based interfaces provided by these
databases, the OPM query interfaces may not perform as well as the canned-queries
that have been manually optimized for directly accessing these databases.

Our collaboration with Thure Etzold at the European Bioinformatics Institute in
installing the OPM Retrofitting Tools and Query Interfaces on top of SRS, has
provided the ability to access via OPM interfaces a wide variety of structured flat-file

198

databases, including many of the major archival molecular biology databases. SRS
reads and indexes flat-files using parsers defined using in the Icarus language, and
then maps them into objects. Initially, we have employed existing Icarus parsers for
various molecular biology databases such as GenBank. Next, we intend to
experiment with more sophisticated parser definitions and new retrofitting techniques
that would allow constructing more detailed and semantically richer OPM views for
such databases.

The OPM Multidatabase Tools have been applied to the construction of a
Molecular Biology Database Federation that includes GDB, GSDB, and GenBank.
The experience gained with this prototype has driven several enhancements of the
Multidatabase Query Tools.

Implementation Issues

The OPM Schema and Query Translators have been developed mainly in C++. The
OPM Schema Editor, Browser, and Query Interfaces were first developed using
X 11/Motif. We encountered numerous problems maintaining and porting these early
OPM editors and interfaces. Currently all our OPM editors and interfaces are
implemented in Java. In spite of its present instability, using Java substantially
reduced the development and maintenance of these tools.

For implementing interfaces between the OPM Web Query Interfaces and Query
Translators, we are using CGI, which is easy to use and maintain given our multiple-
language programming environment. CGI is a natural choice for dynamically creating
HTML pages. In the current CGI-based implementation, the Java-based query
construction front-end uses CGI to call a Perl script wrapper that invokes a C++
version of the OPM Query Translator adapted for generating HTML files. We have
also considered other communication alternatives, including Java and C++ sockets,
CORBA based products with Java and C++ interfaces, such as IONA’s Orbix and
OrbixWeb, and Java 1.1's Remote Method Invocation (RMI) interface, with C++
applications accessed through the Java Native Interface (JNI). These alternatives are
discussed in more detail in [6].

The interfaces between the OPM Multidatabase Query Processor and the OPM
Database Servers are implemented using a CORBA product (either IONA's Orbix or
Visigenic’s VisiBroker). As a programming environment, CORBA's object-based
communication between applications (possibly developed in different languages) is
convenient. However the Interface Definition Language (IDL) is limited in the data
structures that can be passed between applications, and therefore requires extraneous
conversions between the data structures used in applications and those that can be
communicated. Further, despite the C++ mapping defined in the CORBA 2.0
standard, CORBA implementations remain vendor specific, so that porting an
implementation of our query tools to different CORBA products is time consuming.

199

Acknowledgments

Between 1992 and 1997, the OPM tool development was carried out in the
framework of the Data Management R&D Group at Lawrence Berkeley National
Laboratory (LBNL), with funding provided by the Office of Biological and
Environmental Research and the Mathematical, Information, and Computational
Sciences Division of the Office of Energy Research, U.S. Department of Energy
under Contract DE-AC03-76SF00098. We want to thank Arie Shoshani, the head of
the Data Management R&D Group at LBNL, for his active support and
encouragement.

References

1. Chen, I. A. and Markowitz, V. M. An Overview of the Object-Protocol Model (OPM)
and OPM Data Management Tools. Information Systems, 20(5), 1995, pp. 393-418.

2. Chen, I. A. and Markowitz, V. M. The OPM Schema Translator. Technical Report
LBNL-33706, Lawrence Berkeley National Laboratory, 1996.

3. Chen, I.A., Kosky, A., Markowitz, V.M., and Szeto, E. The OPM Query Translator.
Technical Report LBNL-33706, Lawrence Berkeley National Laboratory, 1996.

4. Chen, I. A., Markowitz, V.M., Letovsky, S.I., Li, P., and Fasman, K.H., Version
Management for Scientific Databases. Advances in Database Technology- EDBT-96.
Lecture Notes in Computer Science, vol. 1057, P. Apers & al (eds), Springer-Verlag, pp.

Chen, I.A., Kosky, AS., Markowitz, V.M., and Szeto, E. Constructing and Maintaining
Scientific Database Views. Proceedings of the 9th Conference on Scientific and
Statistical Database Management, IEEE Computer Society, 1997, pp. 237- 248.
Chen, I.A., Kosky, A.S., Markowitz, V.M., and Szeto, E. Exploring Databases on the
Web. Technical Report LBNL-40340, Lawrence Berkeley National Laboratory, 1997.
Chen, I.A., Kosky, A., Markowitz, V.M., and Szeto, E., Exploring Heterogeneous
Biological Databases: Tools and Applications. Technical Report LBNL-40728,
Lawrence Berkeley National Laboratory, 1997.
Etzold, T., and Argo, P. SRS, An Indexing and Retrieval Tool for Flat File Data
Libraries. Computer Applications of Biosciences, Vol. 9, No.1, pp. 49-57, 1993. See
also hp://www.embl-heidelberg.de/srs/srsc.
Goodman, N. An Object-Oriented DBMS War Story: Developing a Genome Mapping
Database in C++. In Modem Database Management: Object-Oriented and Multidatabase
Techniques, W. Kim (ed), ACM Press, 1994.

10. The Object Database Standard: ODMG-93. Cattell, R. G. G. (ed), Morgan Kaufmann,
1996..

11. Programmer's Reference. National Center for Biotechnology Information, 1991. See
also: http://www.inria.fr:80/rodeo/personnel/hoschka/asn 1.html.

12. Stonebraker, M. Object-Relational DBMSs: The Next Great Wave.Morgan-Kaufman
Publishers, Inc., 1996.

289-303, 1996.
5.

6.

7.

8.

9.

This page intentionally left blank.

17 BIOKLEISLI: INTEGRATING

ANALYSIS PACKAGES

BIOMEDICAL DATA AND

Susan B. Davidson*, O. Peter Buneman*,
Jonathan Crabtree*, Val Tannen*, G. Christian

Overton* and Limsoon Wong **

* Center for Bioinformatics, University of Pennsylvania,
Philadelphia, PA 19104

** Institute of Systems Science, Singapore 119597

Introduction

A vast amount of information is currently available in electronic form with Inter- and
Intranet access. The ability to use this information involves several distinct
problems: first, knowing where the information is that pertains to a particular area of
interest; second, accessing the information rapidly; third, efficiently integrating and
potentially transforming the information into a different form; and fourth, viewing the
results in an appropriate manner.

Within the Bioinformatics community, researchers typically solve the first
problem by formally or informally notifying each other of the existence of various
data sources through workshops, conferences, publications, registration on
community web pages, etc. That is, there is general knowledge of what the various
primary data sources are and some level of documentation available on how to access
the data sources and retrieve information. The data is also made accessible to the
community by submission of queries by email or granting remote login privileges.
There are also a variety of mechanisms within the community for visualizing various
types of data, contributing to a solution to the fourth problem. For example,
postscript files are typically presented using ghostview or some similar displaying
tool, 3-D chemical structures are typically viewed using a variety of sophisticated

202

graphical packages (such as Rasmol), and sequence data can be viewed using a
variety of tools, such as those developed using bioWidgets.

However, a fundamental barrier exists to solving the second and third problems
since the format of the data and functionality of access routines for the data can vary
dramatically from source to source. While commercial tools exist for combining data
from multiple relational databases, they do not extend beyond the “sets of records”
type system of relational databases to more complex types such as are found in
ASN.l and Ace formats. It is therefore difficult, if not impossible, to use a single
language or access mechanism to obtain, combine and efficiently transform data from
multiple non-relational sources.

BioKleisli represents a solution to this problem by providing a uniform language
for querying and combining information from a wide variety of data sources,
including the complex data sources that typify the biomedical research community –
ASN. 1, AceDB, SRS indexed files, EcoCyc and other Lisp-based reasoning systems,
in addition to relational systems such as Oracle and Sybase. This list of types of data
sources is not exhaustive; BioKleisli can easily be extended by adding new “data
drivers” as new types of data sources are encountered. In addition to its expressive
query language and extensible architecture, BioKleisli has a powerful query
optimizer that generalizes many of the well-known optimizations of relational
systems to this richer “complex type” system, providing significant improvements in
run-time performance.

BioKleisli can be thought of as a data access, transformation and integration
toolkit, as shown by the dotted lines in the figure below. It is middleware, sitting
between heterogeneous data sources (shown at the bottom of the figure) and tools
that operate on some integrated version of the available data (shown at the top of the
figure). For example, data mining tools must first have the available data in a
standard format – commonly relational – before they can be applied. With the
integration and transformation capabilities of BioKleisli, users can create either
(virtual) views of the underlying data sources, or instantiate data warehouses. Using
a virtual approach, data is accessed at the underlying sources represented in the view.
Data is always up-to-date since it is accessed at its source; however, queries on the
view may encounter network delays since the data is not local. Using a warehouse
approach, data is extracted once from the underlying data sources and stored in some
local database. While queries on the warehouse will not encounter network delays,
the data may not be completely up-to-date. The “freshness” of the data depends on
the update policies used by the warehouse.

203

In the remainder of this chapter, we describe the complex type model underlying
BioKleisli, and a query language for manipulating these types called the “Collection
Programming Language” (CPL). We then briefly describe the use of BioKleisli
through an example of a parameterized view. We close by summarizing how
BioKleisli compares with other systems in use within bioinformatics, in particular
OPM and CORBA.

The Complex Type Model

The type system underlying BioKleisli goes well beyond the “sets of records” type
system of the relational model and allows complex types – arbitrarily nested records,
sets, lists, bags and variants. Recall that a bag (also called a multi-set) is a set in
which duplicates may occur, and that a list is a bag with order.

As an example of a complex type, consider the Publication type shown below,
which has been taken from the ASN. 1 citation literature (1). Note the nesting of a set
of keywords (strings) within the keywd record field of the Publication type, the
nesting of author records within the authors record field, and the use of a variant or
“tagged union” type within the journal field representing that publications are either
controlled journal entries (also a variant type), or uncontrolled entries containing the
name of the person who performed the data entry.

Publication = SET{
RCD{ title: string,

authors: LIST{ RCD{ name: string, initial: string}}

204

journal: VRT : { uncontrolled: string,
controlled: VRT { medline-jta: string,

* Medline journal title abbrev.*

ISO journal title abbreviation

* Full journal title*

iso-jta:string,

journal-title: string,

issn: string }}
\ *ISSN number\ *

volume: string,
issue:string,
year: int,
pages: string,
abstract: string,
keywd: SET{string}} }

In general, the types are given by the syntax:

:=int|bool|string|...|

Here bool|int | string|... are the (built-in) base types. The other types are all

constructors and build new types from existing types. RCD{l

constructs record types from the types VRT{l

constructs variant types from the types .. . , and

respectively construct set, bag, and list types from the type .

Values of these types can be explicitly constructed in CPL as follows:
RCD{l1:e1,l2:e2 ,..., l n: e n} for records; VRT{l : e } for variants, SET{e 1,...,en} for

sets; and similarly for bags and lists. For example, a fragment of data conforming to
the Publication type is

SET{RCD{title : “Structure of the human perforin gene",
authors : LIST{RCD{ name : “Lichtenheld",

initial : “MG"},

initial : “ER"}},
RCD{name : “Podack",

journal: VRT{controlled: VRT{medline-jta:”J Immunol”}}
volume:”143",
issue:”12",
year:1989,

205

pages : “4267-4274",
abstract: ”We have cloned the human perforin gene....",
keywd : SET{“Amino Acid Sequence", “Base Sequence", “Exons",

“Genes, Structural"} } ...}

where the “. . .” indicates that there are other records in the set that have been omitted.
Translating from ASN.l to this format is straightforward, as it is for a variety of other
data formats. We should remark here that BioKleisli does not represent entire
databases in this format; it is used for data exchange between the query language of a
DBMS or the application programming interface of a data format.

The Collection Programming Language (CPL)

The syntax of CPL used here is similar to that of OQL (2), the ODMG standard for
object-oriented database languages. Rather than giving the complete syntax, we will
illustrate it through a series of examples. The first example extracts the title and
authors from a database DB of the type Publication:

sefof rcd{title : p.title, authors : p.authors}
where \p DB

Note the use of “ \p ” to introduce the variable p. The effect of “ \p DB ” is to
bind p to each element of the set DB. The use of explicit variable binding is needed
when queries are used in conjunction with function definition or pattern matching as
in the example below, which is equivalent to the one above. Note that the ellipsis
“. . .” matches any remaining fields in the DB record.

setof rcd{ title : t, authors : a}
where rcd title : \t, authors : \a, ...} DB

Also, the following queries are equivalent:

sefof rcd {title : t, authors ;a}
where rcd {title : \ t,

authors : la,
year: \y...}
y= 1988

sefof rcd { title : t, authors : a}
where rcd {title : \ t,

authors : \ a,
year : 1988, ...} DB

206

These queries are no more than simple projection-selection queries and, but for
the fact that the source data is not in first-normal-form, could be expressed in a
relational query language. However, CPL can perform more complex restructurings
such as nesting and unnesting, as shown in the following examples.

setof rcd { title : t, keyword : k}
where rcd {title : \t, keywd : \kk, ...} DB, \k kk

setof rcd{ keyword : k, titles : setof x.title where \x DB, k x.keywd}
where \y DB, \k y. keywd

The first query “flattens” the nested relation; the second restructures it so that the
database becomes a database of keywords with associated titles. Operations such as
these can be expressed in nested relational algebra and in certain object-oriented
query languages. The strength of CPL is that it has more general collection types,
allows function definition and can also exploit variants, which may be used in pattern
matching:

setof rcd{ name : n, title : t}
where rcd{title : \t, journal : vrt{uncontrolled : \n}, ,..) DB

This gives us the names of “uncontrolled’ journals together with their titles. The
pattern “vrt{ uncontrolled : \n}” matches only uncontrolled journals and, when it does,
binds the variable n to the name.

The syntax of functions is given by \x =e, where e is an expression that may
contain the variable x. We can give this function (or any other CPL expression) a
name with the syntax define f (\x)=e, which causes f to act as synonym for the
expression e. Thus, the titles of papers of a given author can be expressed as the
function,

define papers_of (\x) = setof p where p DB, x p.authors

Note that \x p.authors matches elements of a list rather than elements of a set.

These examples illustrate part of the expressive power of CPL. A more detailed
description of the language is given in (3), where a description of how to express
aggregate functions such as summation, as well as functions such as transitive
closure, is also given. CPL can also be used to query object-oriented databases by
including a reference type, a reference pattern, and a dereferencing operation (4).

207

BioKleisli in Action: Querying Biomedical Databases

BioKleisli consists of a query execution engine and a set of type specific data drivers.
The figure below illustrates the installation that we use at the Center for
Bioinformatics (PennCBI) which underlies the queries shown at the CPL website
http://www.pcbi.upenn.edu (follow links to research projects). Users interact with
the PennCBI installation using parameterized HTML query forms, a variety of
programs written in perl5, prolog, C and other languages, or by using CPL directly.
The types of external data sources that we connect to include ASN.l, Sybase and
AceDB, as well as the BLAST sequence analysis package, as shown by the types of
data drivers illustrated. Note that the Sybase driver can be used for both the GDB
Sybase server as well as our local Sybase database for Chromosome 22, Chr22DB.

To query an external server, the names and types of “structures” that will be
accessed in the data source must be registered as primitives in the BioKleisli library.
For example, with a relational database one must register as parameterless functions
the names of relations or views that will be accessed; alternatively, one can simply
register one function per database which takes as input the name of a relation and
returns a result of type set of records. These functions can then be used in CPL
queries or within other CPL function definitions to create “user views” of the
underlying data sources. The query execution module within BioKleisli will then
generate the appropriate query in the host language of the external server to extract
the value of the named structure. For example, with a Sybase server an SQL query
would be generated from the CPL query. The host language query is then passed to
the appropriate data driver, and from there to the external server. When the external
server returns the result, the data driver translates it into internal BioKleisli format

208

and returns the translated result to the query execution module for further processing
within the original CPL query.

Non-Human Homolog Search

To illustrate how BioKleisli executes queries, we will walk through an example:
“Find information on the known DNA sequences on human chromosome 22, as well
as information on homologous sequences from other organisms.” The strategy taken
in writing this query will be to combine information from relational GDB and ASN. 1
GenBank. GDB is queried for information about the accession numbers of DNA
sequences known to be within chromosome 22. The NA-Homolog-Summary function
available in the Entrez interface to ASN.l GenBank is then invoked to retrieve
homologous sequences (i.e., sequences with significant similarity to the original).
The homologous sequences are then filtered to retrieve only non-human entries. The
final answer is printed as a nested relation.

The GDB Query.

The GDB query joins three tables – locus, object_genbank_eref, and the portion of
the locus_cyto_location that corresponds to entries on Chromosome 22– over the
locus_symbol field, and projects over the locus_symbol and genbank_ref fields.
Assuming that the function GDB has been registered within BioKleisli to access the
contents of a table whose name must be specified by the query writer, the query is
simply written in CPL as

define Loci22 =
setof rcd { locus-symbol:x, genbank-ref: y}
where rcd{locus-symbol: \x, locus_id ;\a,...} (“locus”),

rcd {genbank_ref : \y, object_id : a, object_class_key: 1, ...}
(“object_genbank_eref”),

rcd{loc_cyto_chrom_num: “22”, locus_cyto_location_id : a, ...}
(“locus_cyto_location”)

Note that we could also have written this query by registering separate functions for
each table accessed (locus, locus_cyto_location and locus_symbol) and that this
would have given query writers an idea of the names available within GDB.

If executed as written, Loci22 would generate three separate SQL queries to GDB,
each of which would extract the contents of a table. The optimizer, however,
improves this by writing the entire function as a single SQL query. In fact, a feature
of the optimizer is that it is capable of moving the largest possible subquery of a CPL
query to an external server for execution. This can be done for a wide variety of
types of data sources (5), including relational and ASN.l-Entrez data sources. The

209

savings in execution time is significant: Not only does it minimize the amount of
data shipped from an external data source to BioKleisli, but it can take advantage of
the powerful optimizers present in commercial database systems.

Revisiting the non-human homolog search query.

From the accession numbers returned by Loci22, homologous sequences can be found
via the Entrez function NA-Homolog-Summary. NA-Homolog-Summary takes a DNA
sequence accession number and returns a set of records describing linked entries. The
final solution to our query can then be expressed using these functions as:

setof rcd{ locus : locus,
homologs: setof homolog

where \homolog
NA-Homolog-Summary(locus.genbank_ref),

not (homolog.title like ‘%human%’),
not (homolog.title like ‘%sapiens%’)}

where \locus

Note that the query itself is quite simple, and that most of the effort was spent
figuring out where the relevant data was stored. Examples of other queries can be
found on the CPL home page at http://www.pcbi.upenn.edu (follow links to research
projects) and http://corona.iss.nus.sg:8080/demos.

Conclusions

BioKleisli is a powerful toolkit – middleware – for creating data warehouses or views
that integrate multiple heterogeneous data sources and software systems. Based on a
complex type system in which records, variants, sets, lists and bags can be arbitrarily
nested, it consists of an OQL-like query language called CPL, a query execution
engine with an optimizer that extends to this complex type system many of the known
optimizations of relational database systems, and a set of generic drivers which
provide the translation interface to external data sources – relational, object-oriented,
ASN. 1, AceDB, and Lisp-based systems among others.

It is important to remember that the BioKleisli drivers for database systems are
generic. That is, once a driver for a database management system (DBMS) has been
constructed, any database that is implemented in that DBMS can be immediately
opened and queried in BioKleisli. Thus, BioKleisli completely removes from the
programmer the need to write any DBMS specific code. The type system used in the
DBMSs and other data sources can all be naturally represented within BioKleisli,
which contains drivers for a number of widely used biological data sources. With the
drivers in place, the database designer may choose an integration view and express
that view in CPL. The integrated view is made available to database programmers
who will use the application by registering functions within BioKleisli corresponding

210

to the structures in the integration view. For example, an integrated view for the
non-human homolog search application could be one in which Loci22 and NA-
Homolog-Summary, were registered as structures (the last one being a function);
another could be one in which the final query was registered with some appropriate
name. Note that this is a rather trivial example; in general, the integrated views will
contain many structures and be much more generic.

With the increasing popularity of CORBA as a standard for software and data
sharing (http://www.omg.org/library/public-doclist.html), it is worth considering the
relationship between BioKleisli and CORBA. They are similar in that they both
define a type system and a standard syntax/format/protocol for trafficking in values
adhering to that type system. However, there are some important distinctions:
BioKleisli is based around a query system, and defines a rich language for collection
types. Central to the system are rewrite rules and optimizations that improve the
performance of queries, and isolate portions of queries that can be locally executed
by the external data sources. The CORBA specification was not written with the idea
of generic optimizations and rewrite rules in mind, although individual CORBA
implementations may try to do various things to improve performance.

However, CORBA is a powerful set of standards for interoperation that could be
used from within BioKleisli as an external data source. That is, a CORBA driver
could be written for BioKleisli, allowing BioKleisli to query any CORBA data
source in addition to those it already supports. BioKleisli's type sytem is sufficiently
rich to encode everything expressible in IDL. CORBA could also be used to provide
a programmatic API to the BioKleisli system, allowing programmers to execute CPL
queries from within a programming language of their choice. CORBA could also be
used "internally" as a replacement for the current mechanism used by BioKleisli to
communicate between components of the system, namely the execution engine and
the data drivers, as is currently done in OPM.

OPM (6) is another integration toolkit that is popular within the Bioinformatics
community. The primary difference between OPM and BioKleisli is the goal from
which each project started: OPM focused on using a simple object model for
presenting good visual interfaces to the user through which the underlying system(s)
could be understood and queried. The original application was to retrofit relational
databases with a more intuitive object model. BioKliesli focused on finding a
complete language for complex types, and rewrite rules for optimizations. The type
system and language underlying OPM is therefore not as rich as that underlying
BioKleisli, nor is it as easy to add new data sources to OPM as it is to BioKleisli;
however, the visual interface to OPM is much richer than that currently available in
BioKleisli. An ideal system would combine the interfaces used within OPM with the
query engine of BioKleisli; work in this area is underway.

211

References

13. NCBI ASN. 1 Specification (Revision 2.0). Technical Report available from the
National Center for Biotechnology Information, National Library of Medicine,
Bethesda, MD (1992).

14. R. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan,
A. Springer, H. Strickland, and D. Wade. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann, 1996.

15. P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension
Syntax. SIGMOD Record, 23(1):87-96, March 1994.

16. S.B. Davidson, C. Hara and L. Popa. Querying an Object-Oriented Database
Using CPL. Proceedings of the Brazilian Symposium on Databases, October
1997.

17. L. Wong. Querying Nested Collections. Ph.D. thesis, Department of Computer
and Information Science, University of Pennsylvania, Philadelphia, PA 19104,
August 1994. (Available as University of Pennsylvania IRCS Report 94-09.)

OPM*QS: The Object-
Protocol Model Multidatabase Query System. Technical Report LBNL-38 18 I,
Lawrence Berkeley Laboratory, Berkeley, California, 1995. (See also
http://gizmo.1b1.gov/DM_TOOLS/OPM/OPM.html.)

18. I.A. Chen, A. Kosky, V.M. Markowitz, E. Szeto.

This page intentionally left blank.

18 SRS: ANALYZING AND USING
DATA FROM HETEROGENOUS

TEXTUAL DATABANKS

Phil Carter, Thierry Coupaye, David P. Kreil,
and Thure Etzold

EMBL Outstation, The European Bioinformatics Institute,
Wellcome Trust Genome Campus, Hinxton, Cambridge

CBIOlSD, UK

Introduction

Bioinformatics is a general term that may be defined as the application of computers
and databases to help store, retrieve and analyze biological information. With an
unprecedented growth in the quantity and diversity of biological information,
bioinformatics has become a new scientific discipline widely recognized to be an
integral part of future successes within molecular biology. Information growth is
further complicated by independent organizations maintaining biological databases
using differing technologies in unrelated ways. This has led to a multitude of
dissimilar biological databanks.

SRS was initially developed as a Sequence Retrieval System to overcome these
problems, but has expanded far beyond these limits today. Originally devised at the
European Molecular Biology Laboratory (EMBL) in 1989, SRS's progress has
continued at the European Bioinformatics Institute (EBI). SRS has evolved through
many distinct stages of development, and is currently at version 5.1.0.

One fundamental property underlies most biological databases, their availability in
ASCII text format (American Standard Code for Information Interchange). SRS
exploits this universal medium to create an homogenous collection of databases
accessible to the user through a unified interface. Furthermore, recent additions to
SRS's functionality allow further analysis of retrieved information using various
bioinformatics tools.

At present, SRS envelopes approximately 250 databanks worldwide at 35 public
sites. Around 10,000 accesses to SRS are made each day, making it the most popular
bioinformatics service at the EMBL-EBI ever.

214

SRS Core Features

In this section, we introduce the core features of the SRS system. SRS allows
simultaneous access to different databanks and can create linked (cross-referenced)
data. It is based on a parsing and indexing mechanism, to extract data from databanks
and link entries from those databanks. The user can then access the data and perform
complex queries across different databanks interconnected by link indices through
the SRS Query Language.

Parsing and Indexing

Efficient query systems often use indices to speed up data access. SRS has such an
indexing mechanism. It treats databanks as sequences of entries. Each entry is in turn
composed of different data fields. The contents of the data fields are parsed (i.e. the
text is broken down into recognized strings of characters for further analysis),
selected words or tokens are isolated and then inserted into an index. There is in
general a separate index for each data field.

SRS is based on Icarus [1], which refers to both the language used to extract the
data by parsing the entries and the parser of this language. The Icarus parser is an
essential part of SRS: the more flexible and powerful the parser is, the more
information that can be extracted from the databanks. The problem of the retrieval of
all available information contained in a databank is not a trivial task. Most major
biological databanks, such as the EMBL [2] databank, GenBank [3], etc. were
designed for human readability and are stored in many different formats. In other
words, molecular biology databank formats allow significant freedom to present
information that can be easily recognized by human intellect. It can be a hard
problem to describe these formats using computer languages usually used for parsing
such as Perl or Awk. The other problem lies in the constant and frequent revisions of
databank formats which make “hard” (i.e. inflexible) coding inefficient to support the
highly variable world of molecular biology databanks. The optimal solution to these
problems is a special parser that allows the description of the respective formats of
all known biological databanks. Within this parser the external representation of data
in a flat file is converted to an internal representation, which we call a ‘token list’. In
contrast to most other computer language compilers (e.g. YACC [4] and Lex [5]), the
Icarus parser is an interpreter and combines lexical and syntactical definitions. Both
of these features significantly simplify parser programming and format descriptions
of biological databanks.

215

In SRS, databank structures are represented by Backus-Naur Form (as described
by Wirth [6]) abstract syntax trees or grammars. BNF grammatical rules consist of
terminal and non-terminal definitions. A non-terminal represents a rule and can in
turn be subdivided into terminals and non-terminals. Terminals and non-terminals
group together to form a production. We call a piece of input stream corresponding
to a single terminal a token and a set of tokens a token-list. Biological databank
structures generally use the following scheme: a databank consists of a sequence of
entries, an entry is made of data-fields, a data-field consists of tokens. Tokens are the
part of the input that are parsed by terminals or non-terminals. For instance, a parser
for a databank in an EMBL-like format might look like:

databank = {entry}
entry = id_line

(ra_line de_line oc_line)
end_line

id_line = 'ID' id
de_line = {'DE' word_list)

end_line = '//'
word_list = {word}
word = /[a-z]+/

...

This might operate on a text entry of the (EMBL-like) form:

ID HS40428 1 standard; DNA; HUM; 186 BP.
DE Human tumor suppressor (p53) gene, exon 3
OC Eukaryota; Metazoa; Chordata; Vertebrata
OC Mammalia; Eutheria; Primates
RA Herrmann M., El-Maghrabi R. E., Abumrad N.N.
//

This grammar defines the databank as being a list of entries. The first line of each
entry should be the ID-line followed by zero or more data lines, and the last line is
the string ‘//’. The non-terminals id_line, de_line and oc_line can be recursively
parsed and finally indexed.

Icarus parsers not only recognize entries, but can also perform some semantic
actions during the parsing process. To produce output, any terminal or non-terminal
can be associated with one or more different action commands, such as create a
token, extend (add text to) existing tokens, set some global states of the parsing
process, input/output directives, print commands, variable assignments and function
calls.

Parsers generally parse all they can, i.e. they decompose the input starting with
the root production and go on recursively until having only terminals. In SRS, this
scheme is referred to as forced parsing. This is in opposition to lazy parsing, in

216

which the parser only parses the production(s) that it is asked to parse. The example
can be modified so that, if you asked for the token “entry”, the parser would only go
through the productions it needs, i.e. “databank” and “entry”, and would not parse
“id_line”, “de_line”, etc..

SRS is a flexible environment in which databank structures can be fully described
and thus in which databanks can easily be added or changed. Nevertheless, in a
system with many databanks, many indices (at least one per data-field of each
databank) have to be created and updated. The link indices add substantially to the
complexity of the maintenance of a SRS system since they manifest
interdependencies between separate databanks. Fortunately, the index building
process is automated. A program runs automatically at frequent intervals to check if a
new version of a databank exists and performs the appropriate actions. The storage
size for indices is relatively small, about 10 to 20% of the size of the actual indexed
databanks.

Querying and Linking

On top of Icarus, a set of programs and C-API (Application Programming Interface)
functions allow the interrogation of the internal Icarus representation which is
superimposed to the real textual structure of databanks. Queries are expressed in the
SRS Query Language which has been especially designed for the interrogation of
interrelated flat file databanks. SRS queries operate on sets of entries or subentries,
belonging to one or more databanks. The sets are combined using logical operators
AND (‘&’), OR (‘|’) and BUTNOT (‘!’), and also two ‘link-operators’ denoted by the
symbols ‘<’ and ‘>’.

Operands include index searches of the format “[databank(s)-field:value]” where
one or more databanks can be listed. For querying purposes, the sub-entries (e.g.
features of a sequence) of a databank are considered as a separate databank, and can
be included in this list. Queries on subentry databanks result in sets of subentries.
“Field” identifies the indexed field where the search has to be performed. In the case
of multiple databanks, the field must be defined for all databanks. “Value” can be a
string query with wild cards (‘*’ and ‘?’), a regular expression (delimited by two
forward slashes ‘/’ at the beginning and end and using ‘*’, ‘+’, ‘?’, (...), [...], etc.).
Slightly different syntaxes allow numeric range or date queries. Here are some
examples of queries:

217

Operands also include named sets, which can either be databank names (all entries
from the databank of the given name) or results of previously evaluated queries. For
instance the query:

(temp=[embl-org:human])>SWISSPROT | temp > SWISSNEW

defines a temporary set named “temp” and links it to two databanks named
SWISSPROT [7] and SWISSNEW.

If A and B are sets of entries of two linked databanks, the query “A>B” will return
all the entries in the set B, which are linked to one or more entries in A. The link
operation is antisymmetric, i.e. “A>B” is equivalent to “B<A”. For sets of subentries,
a predefined linking operand parent is defined which identifies the set of entries
containing the subentries. The query “S>parent” will return all databank entries
containing the subentries in S. Note that each different databank contains usually
different types of data. In a certain way each databank behaves as an extent of a class
in an object oriented databases. The link between two databanks has a different
meaning depending on the databanks involved. For example, the query
“SWISSPROT<PDB” will retrieve all known protein sequence entries (SWISS-
PROT can be thought as the extent of known protein sequences) that have a known
three-dimensional structure (PDB [8] contains all known protein 3d structures). Thus,
the link between SWISS-PROT and PDB encodes the relationship “has a known 3d
structure”. Analogously, the link between a SWISS-PROT entry and EMBL entries
can represent the relationship “is encoded by the DNA fragments”. The link
operation in SRS is reminiscent of the ‘join’ operator in the algebra of relational

218

database management systems. The join operator is used to logically combine tuples
from two relations into single tuples, however the link operators select entries from
one databank that are linked to entries of another databank. Link operations are much
less CPU-intensive than joins especially if one of the two linked databanks is very
large.

SRS Interfaces

Several different interfaces to SRS are available. The C-API facilitates the full use of
SRS’s capabilities to those interested in accessing function libraries for programming
purposes. The second interface is a UNIX based command-line interface named
‘getz’. Getz provides a more direct querying mechanism, and also implicitly allows
its combination with other computer applications and UNIX commands. This allows
powerful retrieval on a larger scale via automation as well as interfacing with other
bioinformatics programs. The SRS Web interface is, however, by far the most
popular interface in use. Although less powerful, it’s user-friendly design has made
SRS accessible to a much wider section of the scientific community.

SRSWWW – The Web Interface to SRS

A major difference between SRSWWW [9] and most Web services is that it
maintains state [10]. In effect, users start a session within SRSWWW, at which point
they are designated a unique identifier by the SRS server. After the session is
completed, it may be ‘bookmarked’ within the Web browser. This allows the return
of the user at a later time to the same point in the previous session. At present, the
session is removed from the system after two days if it is not accessed again. This
will be extended to an unlimited time period in the next SRS release due to increasing
request for truly permanent sessions. This will also allow sessions to be downloaded
and moved between different sites.

After entering a new SRS session the user enters the ‘Top Page’ (see figure 1).
Initially, the user is requested to select at least one of the databanks offered which are
grouped into categories. In addition to the inclusion of biological databases such as
genome, mapping and transcription factor databases, more diverse areas such as
mutation databanks are now accessible through SRS.

219

Figure 1. The SRS Top Page.

Figure 2. The SRS Query Form.

220

Following the selection of databanks by the user, the SRS session is continued by
entering the ‘Query Form’ page (see figure 2). In actual fact, SRS provides two
alternative query forms. The default is a simpler, hence more user friendly format.
The second gives more explicit options for more detailed querying. SRS querying
operates by searching a databank through its fields for given terms or expressions.
The query form allows easy access to this mechanism by giving the user a choice of
fields to search in their chosen database/s, into which search terms or expressions can
be entered. If more than one database is chosen, only common fields between
databanks are displayed. The user may also decide at this point how a result shall be
displayed after retrieval, i.e. the number of entries to be retrieved at a time, the
sequence format and which ‘view’ to use. Views are a distinct feature of SRS [11]
and will be described subsequently in more detail.

Successful querying of the database/s leads to display of the ‘Entry List’ page.
The user now has several choices as to how they will proceed. Hypertext links are
inserted into the result set to allow browsing of each entire entry individually.
Wherever possible, hypertext links are inserted into entries to represent cross-
referencing between databanks, allowing the user to explore various depths of related
information. Entire result sets or selected entries may be linked to other databases
using SRS links. Several options are provided for this linking. The user may find the
entries in the results set that cross-reference one or more databanks, the entries in the
selected databank/s referenced by a result set, or entries in the current query results
not referenced by the databanks. This can be an extremely valuable feature when
used in the appropriate way, for example, a search of SWISS-PROT for all entries
relating to calcium binding sites which are then linked to the PDB database. This
equates to the biological question: “Give me all calcium binding proteins with a
solved tertiary structure”.

Another aspect of SRSWWW is its ‘Query Manager’. As different queries and
their results are stored at the SRS server, they can be further explored by combination
with other result sets using the SRS Query Language. For example, an original query
pertaining to the terms “mycobacteria” and “essential” (i.e. retrieve all essential
genes found within mycobacterium), from which a result set from the same database
for the keyword “operon” may be subtracted. The resulting list of entries generated
by the Query Manager will therefore address the question: “All essential genes within
mycobacterium not found within operons”.

A last, but very useful choice, is the further analysis of the result set using various
bioinformatics applications. Tools available differ between sites but approximately a
total number of twenty are thought to be in use at present. This is probably one of
SRS’s most under exploited assets and will be further developed in its coming
versions.

22 1

Analyzing Data in SRS with Applications

Besides browsing query results and using direct and indirect links between databank
entries, external application programs can be used to analyze data. Typically such
applications are database searches by sequence similarity (e.g., BLAST [12]),
construction of multiple sequence alignments (e.g., CLUSTALW [13]), restriction
map analysis, and tools predicting various properties (transmembrane regions,
secondary structure, etc.).

Any system that wishes to integrate a range of applications needs to address
several complex issues. These include generating a simple to use yet extensive user
interface for each application, passing parameters to the application as well as
supplying its input data in a suitable format, and presenting the application’s results
to the user.

Application Parameters and Launching

SRS currently supports two data types: nucleotide sequences and amino acid
sequences. The system can in principle be extended to deal with any kind of data, be
it sequence alignments, sequence profiles, or even entries in a queue of dispatched
jobs. This is an area under active development.

Each entry in a set of query or link results may contain a particular data type (or
several), which could be accepted as input by certain applications. The menu next to
the ‘launch’ button on the Entry List page lists the applications that can operate on
the data types present. Selecting an application and invoking the launch button leads
to the respective ‘Application Launch’ page (see figure 3). Here one may edit the
selection of data passed to the program and set a range of parameters particular to
that application. By clicking on highlighted terms, context sensitive help can be
requested. Help is shown in one separate dedicated window, so as not to distract the
user from the main input form.

222

Figure 3. Key Features of the SRS interface to integrated application programs.

After submitting one’s choices, the selected data and all the parameter settings
made are automatically converted to a format understood by the particular
application, which is then launched. In taking care of all necessary format
conversions, SRS thus transparently mediates between the databases and the range of
formats a data type could be stored in, and the multitude of different input formats
expected by the various applications.

Processing and Viewing Application Results

Application results text is processed like any other databank text. This means that the
results can be queried like any databank in SRS. Moreover, one can perform links to

223

other databanks, and define specific views on application results. For example: the
default view for a BLAST search links all BLAST hits to the databank searched (e.g.
SWISS-PROT), and displays the description field from there. Since application
results from further application launches are accumulated, one can answer questions
such as “Which hits were reported by the last search but not by the previous search?”,
or “In the last three searches, which hits had a bit-score above 30?” The comparison
is done using a link operation. This method can also be used to collate different
algorithms’ performance on a particular problem (e.g., a specific search by both
BLAST and FASTA, or the effects of different parameters settings on an algorithm’s
performance).

As soon as the application program has finished running, its results are thus ‘just
another databank’, which are consequently parsed and indexed. Each application
therefore has an associated SRS databank parser, database structure description and
documentation. This documentation is augmented by the help text for application
parameters.

SRS Views

In the past within SRS, the retrieved information was always a set of entries each
from a single databank. The specification of views was added so that the user can
define virtual entries that may include information from many sources. Views can be
used to treat the sum of all installed databanks as a single structure where user
defined entities can freely span databank boundaries.

SRS regards an entry as a list of data-fields. The simplest form of a view acts as a
filter and allows only selected fields to be displayed. For instance, a view could be
defined to display only the ID, the description and the line containing the sequence
length for SWISS-PROT entries as shown in figure 4. This type of view, the ‘list-
view’, displays the selected data-fields in the order they occur within the entry and in
their original format which includes line codes or field labels. It is mostly useful for
‘turning off undesired information during browsing large sets of entries.

ID ACHA_HUMAN STANDARD; PRT; 402 AA.

DE ACETYLCHOLINE RECEPTOR PROTEIN, ALPHA CHAIN PRECURSOR.

SQ SEQUENCE 482 AA; 54545 MW; E050B513 CRC32;

Figure 4. A SWISS-PROT entry displayed by a list-view.

The table-view provides more sophistication and possibilities. The entry in the

Figure 5. A list of SWISS-PROT entries shown in a table-view.

224

table-view is displayed as a single row. The information displayed is in a different
format in the sense that it is shown without the field identification (line codes or field
labels). On top of this, other conversions can take place to render the information into
a more standardized format, e.g. all author names from all data-banks can be
converted into the form surname-comma-initials (e.g., “Jones, D.G.”). The extraction
and conversion of the information is accomplished by the Icarus parser. Figure 5
shows the same information as in figure 4 using a table view.

A view within SRS is independent from queries and can be applied to any set of
entries provided they are from the databank for which the view was specified. It is
possible to specify a view for multiple databanks so that a single view can be applied
to sets generated by querying several databanks at the same time. However, one
needs to be careful since particular data fields may not be shared by all databanks for
which the view is defined.

Views become particularly useful when combined with links. Each entry displayed
can be individually linked with entries from other databanks from which again only
selected information is displayed. Since the linked entries in turn can be displayed by
a view that specifies further links, the overall structure can be seen as a tree. The
databanks for which the view is defined are root databanks and the databanks
supplying the linked entries leaf-databanks. Figure 6 shows SWISS-PROT entries
together with linked entries from ENZYME [14].

Figure 6. Two SWISS-PROT entries shown with the Description field together with
their linked entries from ENZYME for which the “Catalvtic Activitv” field is included.

An individual data-field may have a list of format options. The sequence field of
protein sequence databanks for example, can be displayed as the plain sequence of
characters, in GCG, PIR or FASTA format. Another option is its display as a Java
applet, which shows the sequence along with a plot for various amino acid
characteristics such as the Kyte-Doolittle [15] hydropathicity values.

Figure 7 shows a SWISS-PROT entry with the sequence displayed by a Java
applet. Displaying Java applets within views is an elegant way of linking data with
analysis methods and is straightforward, since HTML provides tags for calling
applets and supplying their input.

225

Figure 7. A SWISS-PROT entry with its sequence shown by a Java applet as a
hydropathicity plot. The applet can be controlled to display other amino acid
properties or to show the curve with a larger scale.

Since a single root entry may be linked to many leaf entries it is sometimes useful
to have only the number of linked entries displayed. The SRSWWW server shows
this number as a hypertext link that when clicked retrieves the list of leaf entries. The
number is of value itself and can be used for statistics. For instance, using an example
of a link from the TAXONOMY [16] databank to GENBANK one could obtain a
table of taxa together with the number of GENBANK entries that exist for all
organisms each taxon represents.

SRS World Wide: The Databank of DATABANKS

Locating an appropriate server is only the first problem users face when exploring
new databases, since there are as many different query interfaces as there are
databanks. Documentation relating to the databanks and manuals describing the
interfaces vary greatly in content and form, and are often not easily obtained.

In this section we focus on a newly added component within SRS version 5.1 [17]
which generates DATAB ANKS, a database of databanks, by traversing public SRS
servers around the world. In SRS, the documentation for each databank can be
viewed as the respective ‘databank information page’ via the SRSWWW interface.
The databank information page has a standardized layout for easy reference and also
includes server status data on indexing of the respective databank. Both the parser
and the databank documentation files can be requested from SRS for reuse at other
sites. By pooling the knowledge gathered at these worldwide sites, SRS now provides
both a unified method for direct access to around 250 different databases and a
standard framework for their documentation. Automated nightly compilation of the
data guarantees that the overview is up to date.

The documentation collected in DATABANKS is written by the community of
SRS server administrators. In a collaborative effort, it is regularly updated and
extended in a distributed manner.

226

New Functionality for the User

DATABANKS gives the user a single uniform entry point for browsing or searching
particular databanks, and optionally leads directly to the respective databank query
forms. DATABANKS is typically searched by databank name or description. More
generally, any fields of the databank information pages as well as site and server
characteristics can be used in a query.

The results of such a search show all the databanks that matched the search
request and at which sites they are available. For convenience, the list of results
offers direct links to their remote SRS query forms. For example, figure 8 shows the
result of a request for databanks named ‘ENZYME’. As in most cases, more than one
server maintains a copy of the databank, and the list shows alternative sites. The
number of indexed entries and the release number (where assigned by the server
maintainers) help in choosing a nearby site with a current version of the databank.
When searching for a particular database, it often helps to first restrict the search to a
subset of DATABANKS which includes only one site from each group of
alternatives. Currently, this representative site is chosen as the site with the most
extensive databank information page.

227

Figure 8. The results of a query for databanks named ‘ENZYME’.

Each entry in DATABANKS contains a copy of the remote SRS databank
information page, which includes field descriptions and data about the indices, and it
concludes with an overview of alternate sites. Parts of a typical entry are shown in
figure 9. The overview provides direct links for remote queries to each of the sites.
For users in the network vicinity of a particular DATABANKS server, the relative
response times compiled by that server give a clue of the net distances to other sites.
If problems are encountered with the connection to a particular site, it is moved to the
end of the list of alternatives. In this case, data from previous runs is used as backup.
A record of when the backup was originally retrieved indicates whether it might be
out of date.

228

Figure 9. Excerpts from a typical DATABANKS entry

Greater Ease of Administration

SRS server administrators create both parsers and documentation for databanks they
offer on their servers. DATABANKS helps avoid duplication of effort by sharing

229

parser and documentation files, and gives easy access to improvements by members
of the SRS community.

Additionally, DATABANKS offers an easy way to check for database updates by
comparing database sizes and release numbers between alternative sites. We also
believe that DATABANKS may be of help to curators of centrally maintained
database catalogues. They could utilize the extensive database documentation
collected, which is assured to be current by automatic compilation of material from
active servers.

SRS Servers World Wide

To date, the EMBL-EBI’s list of public SRS servers contains 35 sites in 24 countries.
Together they provide the scientific community with access to around 250 different
databases and over 1000 databank copies. Each SRS server locally stores such a list
of known public servers. When a local version of DATABANKS is compiled at a
site, the lists from all visited servers are inspected and the site’s local list is extended
by including any new servers found. This removes the necessity of a central site to
which new public servers must be reported. The association of public servers thus
functions as a distributed system without the need for a centralized or hierarchical
structure. To our knowledge, already 6 sites compile their local versions of
DATABANKS. DATABANKS provides users with an up to date direct gateway into
the ever growing network of databanks, whilst making life easier for server
administrators.

Conclusion and Future Works

The SRS system is widely used in the bioinformatics and molecular biology
community to access biological information in the form of flat files. We can ascribe
this to a successful model of collaborative integration, where the SRS system
administrators collaborate by exchanging structure descriptions and parsers for the
databanks. This has also been possible thanks to the easy descriptions of flat file
databanks using the Icarus language and the clear separation of site specific
configurations from databank specific information.

In this chapter, after outlining the core features of SRS: parsing, indexing, linking
and querying, we focused on recent developments concerning the World Wide Web
interface, applications, views and the Databank of DATABANKS. However, there is
more to come as the SRS system is continuously evolving. Current developments
deal with providing permanent SRS sessions that a user or a group of users can create
and then access later, and also generating SRS wrappers for different kinds of clients
in a client/server architecture.

The client/server paradigm is based on the conceptual distinction between
‘servers’ that are stand alone software components that provide ‘services’ (data and
operations that manipulate this data) and ‘clients’ that use these services. The first
wrappers we provide are CORBA wrappers. CORBA (Common Object Request

230

Broker Architecture [18]) is an open standard considered a good solution for the
development of Client/Server applications in distributed heterogeneous environments
(different computers, different operating systems, different programming languages).
Our CORBA wrappers allow client applications (e.g. visualization tools) to access
SRS servers remotely (through the Internet) through an Object Request Broker
(ORB). These wrappers are generated based on ‘loaders’ defined in Icarus by SRS
administrators on the server side.

We might also consider a more flexible model of client-server, in which the client
application can send to the server information about the granularity of requested
information, and negotiate dynamically a communication protocol by sending a
loader specification from the client side. This would be very useful in a field where
client applications are developed by groups that have little interaction with the
database maintainers. Finally, we are studying the integration of object oriented and
relational database management systems. This will allow mirrored data from external
sources to be kept in flat files, while local data are handled by a database system. The
interfaces should allow work on both systems in the same way, with hybrid query
resolution and query optimization routing the query to the more appropriate system.

References

1.

2.

3.

Interpreter of Commands And Recursive Syntax
http://srs.ebi.ac.uk:5000/man/srsman.html
Stoehr, P.J. and Cameron, G.N., The EMBL Data Library, Nucleic Acids Res.,

Burks, C., Cassidy, M., Cinosky, M.J., Cumella, K.E., Gilna, P., Hayden, J.E.-D,
Keen, G.M., Kelley, T.A., Kelly, M., Kristoffersson, D. and Ryals, J., Genbank,
Nucleic Acids Res., 1991, pp. 2221-2225
Johnson, S., YACC: Yet Another Compiler Compiler, Supplementary Documents
1. University of California, Berkeley, 1986
Lesk and Schmidt, A Lexical Analyzer Generator, UNIX Programmer’s Manual:
Supplementary Documents 1. University of California, Berkeley,
Wirth, N., CompilerBau. B.G. Teubner, Stuttgart, 1984, pp.34-44
Bairoch, A. and Boeckmann, B., The SWISS-PROTprotein sequence data bank,
Nucleic Acids Res., 1991, pp.2247-2249
Abola, E. E., Bernstein, F.C. and Koetzle, T.F., The Protein Data Bank,
Computational Molecular Biology. Sources and Methods for Sequence
Analysis., 1988, pp. 69-81

9. Etzold, T. et al, SRSWWW version 5.1 at EMBL-EBI. http://srs.ebi.ac.uk:5000/
10. Etzold, T., Ulyanov, A. and Argos, P., SRS: Information Retrieval for Molecular

Biology Databanks, Methods In Enzymology, 1996, pp. 114-128
11. Etzold, T. and Verde, G., Using Views for Retrieving Data from Extremely

Heterogeneous Databanks, Pac. Symp. Biocomput., 1997, pp. 134-141.

1991, pp.2227-2230

4.

5.

6.
7.

8.

1986

23 1

12. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic
Local Alignment Search Tool, J. Mol. Biol., 1990, pp.403-410

13. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTALW: Improving the
Sensitivity of Progressive Multiple Sequence Alignment through Sequence
Weighting, Position-Specific Gap Penalties and Weight Matrix, Nucleic Acids
Res., 1994,pp. 4673-4680

14. A. Bairoch, Nucleic Acids Res. 24, 1996, pp. 221
15. Kyte, J. and Doolittle, R.F., J. Mol. Biol., 1982, pp. 105
16. Leipe, D. and Soussov, V.,

http://www3.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html
17. Etzold, T. et al, SRS version 5.1 ftp site

ftp://ftp.ebi.ac.uk/pub/software/unix/srs/srs5.1.0.tar.gz
18. Object Management Group (OMG), Common Object Request Broker:

Architecture and Specification, Revision 2.0, 1995

This page intentionally left blank.

19 BIOLOGY WORKBENCH: A
COMPUTING AND ANALYSIS

ENVIRONMENT FOR THE
BIOLOGICAL SCIENCES

Roger Unwin, James Fenton, Mark Whitsitt,
Curt Jamison¹, Mark Stupar, Eric Jakobsson

and Shankar Subramaniam².

National Center for Supercomputing Applications
University of Illinois, Urbana Champaign

Urbana, Illinois

Introduction

BioInformatics is playing an ever-increasing role in modern biological research. With
the advent of large-scale high-throughput genome sequencing and the availability of
complete genome sequences from several species (Akiyama and Kinehisa, 1995),
accessing and processing of the data has become the largest bottleneck in biology.
Databases like GenBank, PIR, and Swiss-prot provide valuable repositories for the
vast quantities of sequence information, while computational tools like BLAST
(Altshul et al., 1990), FASTA (Pearson and Lipman, 1988), and GenQuest (Shah et
al., 1994)allow the researcher to access that information.

A large number of computational biology tools exist as resources freely available
to biologists through the Internet and the World Wide Web (WWW). Other tools
exist as readily available “shareware” which biologists can download and install on
their own computers. Novel computational methods are constantly being developed
and incorporated into new software.

The usefulness of these programs to the general biologist is limited by the ability
of the researcher to input and transfer data between the databases and the

¹ Current Address: National Institutes of Health Bethesda, MD

² Corresponding author

234

computational tools. Most programs have been written to work with a particular
database. Because the major biological databases have different formats, often the
researcher is required to manipulate the output from one program before transferring
it to another analysis program.

A common example of the problem represented by non-interoperable software is
found in the analysis of a sequence from an automated DNA sequencer. The
sequence is passed from a workstation, often a Macintosh computer, to a Unix
workstation where it is preprocessed for high probability coding sequences and then
filtered through BLAST to determine homology with any existing sequences. The
latter computation is often done on a high-end computer. The entire process
necessitates numerous FTP operations, file format changes and manual input of
parameters to run the programs. It also requires a large investment of time by the
Biologist in learning and carrying out routine computer operations.

Another difficulty facing researchers who wish to utilize new computational tools
is the hardware requirement of the programs. While most tools are freely available,
many are written for the UNIX operating system, due in large part to the
computational power of UNIX workstations. The majority of biological researchers
come from independent laboratories at small colleges and universities, and generally
have neither the resources nor expertise to maintain large UNIX systems. Instead,
most researchers rely upon personal computers which usually do not have the ability
to perform the complex calculations required by many modem tools in a timely
fashion.

There has been, therefore, a need for a seamless environment for biological data
access and analysis. The Biology Workbench was developed to fulfill this need
(http://biology.ncsa.uiuc.edu). The Biology Workbench uses CGI scripts and
programs to integrate databases and tools into the web environment. Querying,
analyzing and computing can, therefore, be done on a server from any client that is
connected to the Internet and has web access.

The Workbench is object-centric. The objects range from high level objects such
as session tools, databases and analysis programs to fine-grained objects such as
protein and DNA sequences and three-dimensional structures. All necessary object
manipulation tools are embedded in PERL and C programs, which pass the correctly
formatted objects to the analysis programs.

235

Figure 1. Organization and Flow of Information through the Biology
Workbench.

The WWW interface of the Biology Workbench provides a uniform user interface
which most researchers are already familiar with, thus reducing the amount of
computer knowledge needed to utilize the tools and perform database searches.

System and Methods

The Biology Workbench is a set of Common Gateway Interface (CGI) applications
written in PERL (Wall and Schwartz, 1991) and C languages.

The Workbench uses a Netscape Web Server, which can be run on any small
workstation, and a Compute Server, which is a multiprocessor high-end computing
platform. The Workbench is accessible from any client which is web-browser
compatible and is networked. Any Web Server, such as Netscape Navigator or
Microsoft Internet Explorer can be used.

BWB and the HTML environment

The core of the Biology Workbench is the BW.cgi program, responsible for
handling, among other tasks, the communication between the tools and the web

23 6

server. Many functions of the Workbench are hard-coded into the core, but the
majority of the functions relating to tool integration remain outside the core, allowing
for integration and customization of programs and tools. Many of the external
subroutines rely on core functions, but a full description of these core functions is
beyond the scope of this paper.

The web-browser environment is a “stateless” system. That is, one page normally
has no idea whatsoever what data the previous page presented, or what the next page
will contain. This makes continuous analysis of a specific data set across a number of
HTML pages difficult. The Workbench overcomes this limitation by storing
information on the pages as “hidden” fields and by keeping sequence data in user
specific session files, stored on the Compute Server.

Module Use

Use of most modules (or tools) follows the following simple pattern. The user selects
a sequence or set of sequences, selects an analysis tool or module, and then clicks the
“Perform Selected Operation” button. Next, the user is presented with a setup or
parameters page. After parameter selections are made, the submit button is clicked
and the results are returned. These results may consist merely of textual information,
or may contain sequence data that can be viewed and imported to the Workbench.
While this path is not always taken, it does describe how the majority of the tools are
used.

Program Input and Output

Most of tools currently integrated into the Biology Workbench were originally stand-
alone, command-line, textual input/output programs. Perl (Practical Extraction and
Report Language), with its incredibly strong text handling features, is perfect for
handling and parsing the textual I/O from the tool. The HTML code necessary can be
easily generated to reformat the data for submission to the next tool.

Because the tools in the Workbench have been written by a variety of authors, the
types and styles of input and output are equally variable. It is, therefore, vital to fully
understand the command line parameters, input formats, output options (STDOUT,
output file, or both), as well as the significance of the I/O to the user.

While sending textual output to the HTML page might be sufficient for some
tools, other tools offer the opportunity for importing their results back to the
Workbench, therefore requiring more involved HTML programming to allow the
user to view and select sequences. The HTML environment also allows for enhanced
output presentation that can aid the user’s interpretation of their results.

Standard Subroutines

237

In order to make wrapper development easier and standardize tool integration into
the Workbench, several files containing subroutines are included in the Workbench
tree. These files are generally “required” by all Perl wrappers, but the subroutines
may be extracted and revised to suit individual needs. While we recommend using
the standard subroutines wherever possible, we cannot fully predict the needs of users
for other non-standard tool specific routines. This concept is being refined for future
releases of the Workbench.

The central file for tool integration is the “html.pl” file, which contains the
necessary subroutines for communication with BW.cgi (the Workbench core CGI
program) and for passing configuration information to the wrapper scripts. This file
should be included at the beginning of all scripts using the “require” directive in Perl.
Tools wrappers may, however, require only a subset of the subroutines in the html.pl
file.

Sessions

Each time a user accesses the Workbench, a previous analysis session can be
resumed or a new one initiated. The role of the sessions is to maintain the state and
sequence of operations performed on the Workbench during an interactive session.
Sessions can be useful for both recalling previously performed operations as well as
for comparison with newer analyses. Essentially, sessions provide the history of the
Workbench use and can be updated, erased or permanently stored.

Databases

Almost all of the relevant biological sequence, structure and literature databases are
accessible from the Biology Workbench. The databases are federated by
identification of common objects and indexing each database based on these objects.
We use the SRS schema (Etzold and Argos, 1993) to store and access the databases
allowing them to be queried for multiple objects as well as combinations of objects
using Boolean operators on the query construction page. The Workbench also
permits nested Boolean queries.

To aid the integration of SRS indexed databases, the file “db_config.pl”
containing routines for parsing database directories and identifying available
databases is provided. These routines also extract important information on specific
databases to allow sequence information to be properly imported to the Workbench.

A database mirroring program has also been developed for the Biology
Workbench, which fetches databases as they are updated in their primary
repositories. The indexing and creation of Blastable sequence database files is done
locally each time new databases are retrieved. A complete list of all databases
available on the Workbench is presented in Appendix A.

Analysis Modules

238

The Biology Workbench contains all the commonly used, publicly available analysis
modules for the protein and nucleic acid sequences and structures. “Bread-and-
butter” modules for biologists such as BLAST and FASTA, programs for aligning
multiple sequences such as CLUSTALW and MSA and multiple sequence profile
and statistical analysis tools are all a point-and-click away on the Workbench. A
complete list of available tools is presented in Appendix B.

System Overview

Figure 2: Invoking an old session file

A typical user session begins with a user-specific login to the Workbench server
followed by the invocation of a session. Invoking an old session file places the user
in the final state of the most recent prior invocation of that session. The user may
then choose one of the analysis tool-sets, namely Protein Tools, Nucleic Acids Tools,
and Alignment Tools. Selection of the Protein Tools, for instance, displays a page in

239

the browser window containing a menu of protein-based tools, and a list of
previously imported protein sequences (Vide Fig. 2.).

Figure 3: Querying Databases

The user may access existing databases by selecting the "SRS Multiple Database
Search" menu item. A page containing the menu of databases pertinent to the current
tool-set (Protein or Nucleic Acids) is displayed (Vide Fig. 3). The user may then
construct a database query for any pertinent object or combination of objects, submit
the query to the server, and the resulting page returned to the browser will contain the
results of the query. The user may then import a selected set of sequences from the
search results to the Workbench for further analysis. For instance, the user may
choose a subset of previously imported "enolase"protein sequences from a particular
species and invoke the program CLUSTALW to generate a multiple sequence
alignment. Invoking the program with a click, displays a web page containing the
standard program parameters which can be altered by the user. The sequences are
then submitted for computation using the selected parameters. As soon as the
alignment computation is complete, the results are displayed in the browser window.
In this instance, a set of aligned enolase sequences along with a phylogenetic tree
would be presented. The aligned sequence set can then be imported back into the

240

Workbench for color-coding based on degree of similarity using a program such as
MSA-Shade. Once the color mapping is completed, a GIF image of the color-coded
sequence alignment is displayed in the browser page. Alternatively, a postscript file
of the color coded alignment may be downloaded for publication purposes (Vide Fig.
4).

Figure 4: MSA results and protein 3D structure

The user may also input their own sequences in several formats, either manually
or as an uploaded file, for analysis on the Workbench. Many of the computing tasks
in the Workbench may also be done as a batch submission on the Compute Server by
selecting the “batch” option. These results will then be made available to the user

24 1

either during the current Workbench session or upon resuming the session at a later
time.

Much of the display on the Workbench is tailored to the program outputs of the
specific tools. For instance, using an appropriate MIME-type for RASMOL, three
dimensional structures of macromolecules can be displayed on a browser
window(Vide Fig. 4).

Discussion

The Biology Workbench is a WWW-based analysis environment which brings high-
powered computation into an experimental laboratory. The seamless integration of
remote database and computational biology tools forms creates a virtual computer,
with WWW browsers as the GUI interface. The platform independent access to tools
creates an environment in which all biologists can utilize programs which previously
were found only in large laboratories with heavy bioinformatics investments.

Several
aspects of genome informatics including automated analysis and annotation, newer
tools for protein and gene clustering, and tools for fast comparisons across genomes
are all under development.

Acknowledgments

This work was supported in part by NSF grant ASC 89-02829 and by grants from
MDL Informatics Corporation. All the computational resources for the public
version of the Biology Workbench are provided by NCSA.

The future of the Biology Workbench is targeted towards genomics.

APPENDIX A

List of All Currently Available Biological Databases in The Biology Workbench

Nucleic Acid Databases
GenBank - NCBI Nucleic Acid Sequence Database (Protein also)
GenBankNew - NCBI Nucleic Acid Sequence Database (Protein also)

Protein Databases
BLOCKS - Aligned Ungapped Highly Conserved Protein Segments
NRL3D - Sequence and Annotation Information Taken From The PDB
PDBFINDER - Protein Sequences From The PDB
PIR - The Protein Information Resource
SWISSPROT - Protein Sequences From Geneva And EMBL
SWISSNEW - Protein Sequences From Geneva And EMBL

242

TREMBL - Supplement To SWISSPROT Database
TREMBLNEW - Supplement To SWISSPROT Database
PIRALN - Alignment Database from The Protein Information Resource

Literature and Textual Databases
ECDC - Information On The E.coli K12 Chromosome
ENZYME - Data For Enzymes With An EC Numbers
EPD - Eukaryotic Promotor Database
FlyGene - Subset Of FlyBase
PRODOM - Comprehensive Collection Of Protein Families
PROSITE - Dictionary Of Sites And Patterns In Proteins
PROSITEDOC - Annotation On Selected Proteins From PROSITE
OMIM - The Mendelian Inheritance In Man Data Bank
REBASE - The Restriction Enzyme Database
SEQANALREF - Sequence Analysis Bibliography Data Bank

APPENDIX B

List of Currently Available Tools in the Biology Workbench

Sequence Management Tools
Add New Sequence
Edit Sequence
View Sequence
Delete Sequence
Copy Sequence
Download Sequence
View Scoring Matrices

Common Analysis Tools
SRS
FASTA Heuristic database similarity searching
SSEARCH Smith-Waterman database searching
ALIGN
LALIGN
LFASTA
BESTSCOR Self-comparison similarity scores
RANDSEQ
CLUSTALW Multiple sequence alignment and phylogenetic tree

Multiple database searches with Boolean queries

Smith-Waterman pairwise global sequence alignment
Smith-Waterman pairwise local sequence alignment
Heuristic pairwise local sequence alignment

Sequence randomization for statistical analysis

construction

243

PROFILESCAN Comparison of protein or DNA sequences with profile

MOTIFGREP
MOTIFGREPDB

Protein Tools
BLASTP Heuristic database similarity searching
TBLASTN Heuristic database similarity searching (protein query,

database translated)
TFASTA Heuristic database similarity searching (protein query,

database translated)
TFASTX Heuristic database similarity searching (protein query,

database translated)
PRSS Protein sequence similarity statistical significance calculation
CHOFAS Protein secondary structure prediction - Chou and Fasman
GOR4 Protein secondary structure prediction - Garnier, Osguthorpe,

and Robson
GREASE Kyte - Doolittle hydropathicity profiles
ROBUST Global pairwise sequence alignment
S A P S Statistical analysis of protein sequence composition
SIMP Smith-Waterman pairwise sequence alignment
AASTATS Amino acid composition statistics
MSA Multiple sequence alignment
PROSITE
PROSEARCH
MPSSP
HTH Helix-Turn-Helix identification
DSSP

Nucleic Acids Tools
BLASTX Heuristic database similarity searching

BLASTN Heuristic database similarity searching

TBLASTX Heuristic database similarity searching

libraries
Sequence identification using Regular Expressions
Database searching using Regular Expressions

Searching PROSITE database for protein sequence patterns
Searching PROSITE database for protein sequence patterns
Combined algorithm protein secondary structure prediction

Secondary structure and solvent accessibility predictions

(translated nucleic acid query, protein database)

(nucleic acid query, nucleic acid database)

(translated nucleic acid query, translated nucleic acid
database)

FASTX Heuristic database similarity searching

REVCOMP
SIXFRAME
TACG
TACGXLATE

Alignment Tools

(translated nucleic acid query, protein database)
Generate the reverse-complement of a nucleic acid sequence
Translate a nucleic acid sequence in all six reading frames
Restriction enzyme recognition site identification
Translate a nucleic acid in a user defined reading frame

244

MSASHADE
TMAP
CLUSTAL_W Phylogenetic tree analyses
PROTDIST Evolutionary distance matrix computations
PROTPARS Unrooted phylogeny inference

Formatting and color-coding multiple sequence alignments
Identification of transmembrane protein segments

References

2. Akiyama, Y. and Kinehisa, M. (1995) Introduction to database services on the
GenomeNet. Exp. Med., 13 (in Japanese). See also URL
http://www.genome.ad.jp/dbget/dbget.links. html
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990).
Basic Local Alignment Search Tool. J. Mol. Biol. 215,403-410.
Etzold, T., and Argos, P. (1993) SRS - an indexing and retrieval tool for flat file
data libraries. CABIOS 9, 49-57.
Pearson, W.R., and Lipman, D.J. (1988). Improved tools for biological sequence
comparison. Proc. Natl. Acad. Sci. USA 85, 2444-2448.
Shah, M.B., Guan, X., Einstein, J.R., Matis, S., Xu, Y., Mural, R.J., and
Uberbacher, E.C. (1994). User’s guide to GRAIL and GENEQUEST. URL.

Wall, L., and Schwartz, R.L. (1991). Programming perl. O’Reilly & Associates,
Sebastapol, CA, USA.

3.

4.

5.

6.

7. http://avalon.epm.ornl.gov:80/manuals/grail-genequest.9407.html
8.

20 EBI: CORBA AND THE EBI
DATABASES

Kim Jungfer, Graham Cameron and Tomas
Flores

EMBL Outstat ion - Hinxton, The European Bioinformatics
Inst i tute , Wellcome Trust Genome Campus , Hinxton,

Cambridge CBIO lSD, United Kingdom

Introduction

The European Bioinformatics Institute (EBI) is a major center for biological data.
Research groups have collected genome-related data for the last 15 years, during
which the amount of data has grown exponentially. There are now more than 300
publicly available collections of highly interrelated data. The more the size and
complexity of molecular biology data grow, the more important become automatic
tools for management, querying and analysis. The current limitations in using this
wealth of information are not due to missing technology but to lack of
standardization. Biologists utilize every possible hardware platform, operating
system, database management system and programming language. The de facto
standard CORBA [9] [10] [11] offers the opportunity to make such differences
transparent and thereby helps to combine disparate data sources and application
programs.

Molecular biology data have traditionally been stored in simple text files often
referred to as flat-files. Flat-files are the minimalist storage mechanism, adopted for
small data sets and simple programs – easily distributed and readily comprehensible.
Even large volumes of complex data, although managed in database management
systems, are often distributed as flat-file "entries". This leads biologists to see the
flat-file as the basic data representation. The advent of the World Wide Web [2]
strengthened this view. Flat files can easily be transformed to hypertext by turning
references into hypertext links. The Sequence Retrieval System SRS [7] is a well-
known example of this approach. Flat-files became the center of the data flow in
molecular biology. Every data collection has to provide a flat-file version in order to
distribute the data and most analysis programs use flat-files as their data source.

246

This central role of flat-files has several disadvantages. The most obvious problem
is that flat-files are difficult to use. Writing a parser is a non-trivial task, which is
further complicated by imprecisely specified and frequently changing formats.
Previous attempts to establish a standard flat-file format have failed because
biologists do not agree on a single model of their data. Another major draw back is
that flat-files can lead to an immense waste of computing resources. Different
programs often expect different flat-file formats so that the same site needs to keep
multiple copies of the same data (for example FASTA and BLAST). Finally, the wish
of human readability results in the attempt to keep all information associated with an
entry together. Since this attempt conflicts with the goal of normalization, flat-files
tend to be redundant. For instance the classification of a virus might be repeated in
all entries from that virus.

Strategy

It would not be realistic to abolish the usage of flat-files in general, but it is
necessary to allow for alternative solutions to overcome the problems discussed
above. This can be achieved only if the dependency on flat-files and their formats is
removed. The task for which flat-files are least suited - providing a programming
interface to application programs - demonstrates this point. A sequence comparison
program, which depends on a flat-file format, violates the principle of data
independence (see for example [6]). In an ideal world it should make no difference
whether an application accesses a local flat-file or a remote relational database as
long as both serve the same data. The concept of interfaces helps to achieve this goal.
Data source and application programs interact through interfaces, which hide the
underlying implementation details. A piece of software, which can be used in
different contexts through a defined interface, is called a component. But
componentry can work only if used together with a widely accepted standard for
defining interfaces and invoking methods through them. CORBA is such a standard.

CORBA

In 1989, the Object Management Group (OMG) was formed [19]. It now has more
than 700 members, including practically all major software vendors, hardware
vendors and large end-users. OMG’s stated goal is to standardize and promote object
technology. The core specification adopted by the OMG is the Common Request
Broker Architecture – CORBA; references [12] [14] give good introductions.
CORBA combines the concept of interfaces with the object oriented distributed
programming paradigm. Among other things it specifies:

the Interface Definition Language (IDL), which provides a language-independent
way of describing the public interface of objects.

247

the Object Request Broker (ORB), which transparently transmits request from
clients to object implementations.

Once the interface for a distributed object is defined in IDL, any client can use it
depending only on the objects public interface. It is irrelevant to the client where the
object implementation resides or in what language it is implemented. In order to
invoke methods on the CORBA object, the client needs to obtain an object reference
for that object. The object reference serves as a proxy object on which the client can
invoke methods as defined in IDL

It is worth comparing the CORBA approach with the more familiar Remote
Procedure Call (RPC). Using RPC a client invokes a function on a server, while in
CORBA a client invokes a method on an object. Such a CORBA object is a purely
logical entity whose implementation is unknown to the client. In many cases the
server implements several CORBA objects as shown in Figure 1.

Figure 1 : RPC versus CORBA

Microsoft’s Distributed Component Object Model (DCOM) [3] is an important
alternative to CORBA. However, DCOM is not considered here because of its
proprietary nature and lack of cross-platform support.

Interfacing Databases with IDL

How should interfaces to databases look? Should the data model be reflected in IDL,
and if yes how? Since the answer to these questions depends very much on the
concrete application, the best way to find the “right” IDL is very often a use-case
analysis [8]. Several important cases will be examined in this section using the simple
example of protein sequences. It is important to understand that these different
possibilities do not exclude each other – they simply meet different requirements of
different applications. In our example, every protein sequence has a number of
attributes, one of which is a reference to an entry in the EMBL Nucleotide Sequence
Database.

248

“lnterface”-Based

Interface SwissProtSequence {

attribute string accession;

attribute string description;

attribute string sequence;

attribute EMBLSequence EMBL;

}

Interface EMBLSequence { ... }

This is perhaps the most natural representation. Every class of the data model is
represented by a corresponding interface. Every database entry is represented as a
CORBA object. The application program can use such a sequence object as if it were
local. Access to the attribute “EMBLSequence” will transparently cross database
boundaries. Interface-Based data representations are therefore very easy to use. The
biggest disadvantage is that this approach might lead to heavy network traffic. If the
application program wants to get all four attribute-values then four remote method
invocations will occur. If the application requires access to many such objects the
load becomes unacceptable. Since the data are accessed in small pieces, this
approach is often called “fine-grained”.

“Struct - Based

struct ProteinSequence {

string accession;

string description;

string sequence;

string EMBLAccesion;

}

struct EMBLSequence { ... }

”

249

Every database entry is represented by a “struct”. In contrast to CORBA objects,
structs are passed by value. Access to the individual fields is therefore local and very
fast. On the other hand the application has to get the whole struct even if it is only
interested in the sequence field. Structs are nearly as convenient to use as CORBA
objects with one subtle difference. Structs can’t be referenced physically. In this
example the SwissProt entry contains the accession number of an EMBL entry. The
client has to know itself how to get the EMBL sequence given the accession number.
The upcoming CORBA 3.0 specification will address the pass-by-value issue and
make the definition of structs unnecessary in some cases.

Generic

In this approach the data model is not represented in IDL. The objects are instead
encoded in generic types like strings. The main advantage of this approach is ease of
maintenance. Using IDL, clients and servers have to be compiled together with the
classes, which are generated from the IDL definition. This can become a burden if
the data model is large or changes frequently. Generic representations are well suited
for generic applications, which are not interested in the semantics of the data. For
end-user applications (e.g. an alignment program) generic representations are very
cumbersome to use. An example of a syntax of this sort is the object interchange
format OIF, defined in the ODMG 2.0 standard [4].

Queries

The ability to express queries is important for all databases. This aspect is
standardized in CORBA through the query service specification [10]. The central
element is a CORBA object of the type query evaluator. A query evaluator takes a
query string as input and returns a reference to a result collection. This collection is
another CORBA object, which can itself implement the query evaluator interface.
Because the query service does not specify the elements of the result collection, it can
be combined with any of the above listed representations. Furthermore the query
service can be used with every possible query language depending on the underlying
database management system.

Conceptual Data Model

Even though Interface-Based and Struct-Based representations can have a very
strong similarity to the conceptual data model, it is important not to confuse them.
The purpose of the conceptual model is to model the data as they really are, using
concepts close to humans. Neither the database schema nor the IDL can replace such
a high level model. The database schema is specific to the used DBMS and may
contain optimizations. The IDL is independent from implementation details but it
represents merely an application specific view.

250

Figure 2: Relationship of Conceptual Model, DB Schema and IDL

CORBA Wrappers

Generally, today’s databases do not provide CORBA interfaces to their data. It is
therefore necessary to build a so-called wrapper – a program which implements IDL
interfaces for already existing “legacy systems”. This section will discuss some of the
technical issues involved for a fine-grained CORBA interface.

Figure 3: CORBA wrappers make existing DBs available through the ORB

Registering Large Numbers of Objects

Databases can contain millions of entries. The ORB has to be able to keep track of
the connection between these database entries and the corresponding CORBA object
references. The general idea is to encode a unique identifier of the database entry in
the object reference. It is therefore essential that such an object identifier or key
attribute exists in the database. Most ORBs have their own proprietary way of
implicitly registering large numbers of objects. The recently adopted Portable Object
Adapter (POA) standardizes this possibility.

251

Wrappers with and without State
Typically every CORBA object is represented by one corresponding object of the
implementation language of the server (e.g. a C++ object). In the case of a database
wrapper this means that the C++ server contains a copy of the database entry (Figure
4a). If a client invokes for the first time a method on an object reference the
corresponding database entry is loaded and the C++ object is instantiated. It stays in
memory for subsequent method invocations until the server actively removes it to
avoid maintaining a copy of the whole database. This approach can be fast because
the CORBA server is a cache for database entries but it makes a system for garbage
collection necessary.

a) b)

Figure 4: CORBA wrappers with a) and without state b)

In the second possibility (Figure 4b) the CORBA server is stateless. One language
object implements a set of different CORBA objects each representing another
database entry. For every request the server extracts the object identifier from the
request in order to find out which CORBA object it has to emulate. In this approach
no garbage collection is needed but every request requires access to the underlying
database.
Object-Relational Mapping
Relational database management systems (RDBMS) are still the standard today.
Several major databases at EBI, such as the EMBL Nucleotide Sequence Database
and TREMBL, use the RDBMS ORACLE. Since the relational model is very
different from an object-oriented conceptual model, object-relational mapping [15]
becomes the central problem for CORBA wrappers. There are several tools, which
can help to define object-oriented views on top of a relational database. An example
is the object-relational mapping tool “Persistence” [20]. It follows the philosophy of
object-oriented databases [1] [4] in the sense that it makes database entries directly
available as C++ objects. Persistence is therefore well suited for implementing
CORBA servers, which cache database entries in main memory. The main
disadvantage of this tool is that the developer has not much freedom to define object
schemas. The Persistence object schema is very close to the original table structure of
the relational database. Relational views and a certain amount of hand coding are
often necessary to create the required mapping. Another type of mapping tool
supports the mapping of object-oriented queries to SQL queries. (for example OPM

25 2

[5]). Such a tool is potentially better suited for stateless wrappers and for the
implementation of a CORBA Query Service.

CORBA Prototypes

There are now a large number of CORBA applications and prototypes available at
EBI [17]. They include:

Database Wrappers

EMCORBA A fine-grained CORBA interface to the EMBL Nucleotide
Sequence Database by Jeroen Coppieters, Carsten Helgesen, Philip Lijnzaad and
Timothy Slidel. The server was implemented in C++ using the RDBMS
ORACLE, the object-relational mapping tool Persistence and the ORB ORBIX
[18].

RHdb There are two CORBA servers to the Radiation Hybrid Database by
Carsten Helgesen, Philip Lijnzaad and Patricia Rodriguez-Tomé. One is
implemented in C++ using ORACLE, Persistence and ORBIX. The second
server is implemented in Java using JDBC to query the ORACLE database and
the ORB VisiBroker for Java [21]. The object-relational mapping was purely
hand-coded.

Applications

AppLab A general-purpose CORBA wrapper for a large class of command-line-
driven applications by Martin Senger. It uses the GCG configuration file
language.

Mapplet A Java Applet, which displays radiation hybrid maps by Kim Jungfer.
The CORBA server for this applet uses the flat-file version of RHdb.

Hyperbolic Viewer A Java applet for the visualization of tree like data
structures by Alan Robinson. In this example a taxonomy tree is displayed. Chris
Dodge and Timothy Slidel provided the CORBA taxonomy server using Sun’s
ORB NEO and the RDBMS Sybase.

Genome Builder A tool for building virtual sequences using the EMCORBA
server by Juha Muilu.

Protein Sequence Space Viewer Displays families of proteins and their
residues in a multidimensional space, projected into 2D and 3D by Chris Dodge.
The algorithm is computationally intensive and therefore separated from the Java
viewer in a specialized CORBA server.

25 3

Discussion

CORBA and IDL minimize dependencies between different components by hiding
implementation details like operating system, network, location and programming
language. This decoupling of clients and servers dramatically facilitates the
development and maintenance of application programs. Even though this is obviously
an improvement of the current state of affairs, it pushes the problem to another level.
How can software components developed by independent groups interoperate? They
can do so only if they share a set of common IDL definitions.

OMG’s Domain Task Forces (DTF) provide formal frameworks for the adoption
of standard interfaces for a specific application domain. At the OMG meeting in
Dublin, in September 1997, a “Life Sciences Research” Domain Special Interest
Group (DSIG) was formed. The DSIG represents a first step to the creation of a DTF.
Its goal is to provide a forum for everybody who wants to get involved in the creation
of standards for the life sciences area [16]. Life Sciences Research includes, but is
not limited to, such fields as genomics, bioinformatics and computational chemistry.

The standardization of interfaces will bring us eventually closer to the vision of
componentry [13] where the functionality of today’s monolithic, closed systems is
taken over by collections of object services. We will be able to mix and match
components from different providers and find uses for applications that were never
dreamed of by their developers. This intrinsic openness will make it significantly
easier for a lone researcher to contribute to the bioinformatics projects of the future.

Acknowledgments

We wish to thank Jeroen Coppieters, Chris Dodge, Carsten Helgesen, Katarzyna
Kruszewska, Philip Lijnzaad, Phil McNeil, Juha Muilu, Jeremy Parsons, Nicole
Redaschi, Alan Robinson, Patricia Rodriguez-Tomé, Martin Senger, Timothy Slidel
and Anastassia Spiridou for their involvement in various CORBA projects at EBI.

The research into common CORBA interfaces on distributed data sources is
supported by grant BIO4-CT96-0346 from the European Union (DG XII). The
development of interfaces to distributed applications is supported by the
BioStandards project, a consortium of EU (DG III), EMBL and 19 pharmaceutical
companies.

References

1. Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K. Maier, D., Zdonik, S. The
Object-Oriented Database System Manifesto, First International Conference on
Deductive and Object-Oriented Databases, 1989.
Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H.F., and Secret, A. The
World-Wide Web, Commun. ACM 37(8), 1994, pp. 76-82.
Brockschmidt, K. Inside OLE, Second Edition, Microsoft Press, 1995.

2.

3.

254

4.

5.

Cattell, R. G. G., et al, The Object Database Standard: ODMG 2.0, Morgan
Kaufmann, 1997.
Chen, I. A., and Markowitz, V. M. An Overview of the Object-Protocol Model
(OPM) and OPM Data Management Tools, Information Systems, Vol. 20, No 5,

6. Date, C. J. An Introduction to Database Systems, Fifths Edition, Addison-
Wesley, 1990.

7. Etzold, T., Ulyanov, A., and Argos, P. SRS: Information Retrieval System for
Molecular Biology Data Banks, Methods in Enzymology v. 266, 1996, p. 144.

8. Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. Object-Oriented
Software Engineering, Addison-Wesley, 1992.

9. Object Management Group, CORBA: Architecture and Specification, OMG
publication, 1996.

10. Object Management Group, CORBAservices, OMG publication, 1996.
11. Object Management Group, CORBAfacilities, OMG publication, 1996.
12. Orfali, R., Harkey, D., Edwards, J. Instant CORBA, John Wiley & Sons, 1997.
13. Sessions, R. Object Persistence, Beyond Object-Oriented Databases, Prentice

Hall, 1996.
14. Siegel, J., CORBA Fundamentals and Programming, New York, John Wiley &

Sons, 1996.
15. Wiederhold, G. Views, Objects and Databases, IEEE Computer, 19, 2, 1986.
16. http:lllsr.ebi.ac.uk
17. http://www.ebi.ac.uk/~corba/
18. http://www.iona.com/
19. http://www.omg.org/
20. http://www.persistence.com/
21. http://www.visigenic.com/

1995, pp. 393-418.

21 BIOWIDGETS: REUSABLE
VISUALIZATION COMPONENTS

FOR BIOINFORMATICS

Jonathan Crabtree, Steve Fischer, Mark
Gibson and G. Christian Overton

Center for Bioinformatics, University of Pennsylvania,
Philadelphia, PA 19104

Introduction

Genome centers around the world are ramping up to the sequencing throughput
required to bring the first phase of the Human Genome Project to a close. It is more
apparent than ever that bioinformatics support must play an integral role in genome-
scale mapping and sequencing projects. As genomics data is collated into
information management systems, it furthermore must become available to scientists
in a form that facilitates their comprehension of it. Interactive data visualization
components provide a way to fulfill this need

In large part because of the limited resources often allocated to bioinformatics in
the past, those responsible for designing and implementing laboratory information
systems have had to make do with what they could get, particularly in terms of
obtaining software. As Goodman put it, “the choices that face the architect of a
genome information system today are: (i) build it yourself so that it does exactly what
you want, or (ii) adopt someone else’s system and live with most of its quirks and
limitations” [1].

The solution to the problem of limited resources is simple in principle: design
systems as collections of interoperable components and share those components
freely. The tacit assumption in this approach is that smaller, more modular programs
will be able to avoid the quirks and limitations that tend to be the hallmarks of large
“monolithic” systems. And even if some components fall short in this regard, making
use of them is, by definition, not an all-or-nothing proposition. This is the motivation
behind the bioWidgets project, an effort to create and share graphical user interface

25 6

(GUI) components for the display and visualization of genomic data, potentially over
the World Wide Web.

Background: bioTk

A similar observation about the utility of component-based software led David Searls
to create bioTk [2], a set of graphical user interface and data visualization tools. In
bioTk, the direct progenitor of bioWidgets, Searls used the language Tcl/Tk to define
visualization components (widgets, in Tk parlance) to display sequence, mapping and
chromosome data. He provided a simple specification for invoking the widgets, as
well as such ancillary components as menus, a context-sensitive help system, and
utility dialog boxes. Searls also set a high standard with the documentation and
tutorials that accompanied his toolkit. Figure 1 depicts the bioTk chromosome
widget used in a simulated karyotype display.

New technologies: Java™

In the short time since Searls’ work in Tcl/Tk, a number of significant new
technologies have been introduced, among them JavaTM[3]. Typifying the growing
popularity of the object-oriented paradigm in software engineering, Java™ is a
language designed to provide a secure way to “program the web.” JavaTM programs
called “applets” can be sent across the network along with web pages and a web
browser will interpret the applets by running them on the user’s local machine.

In the past, web-based interfaces to the databases and tools used in bioinformatics
were greatly restricted in the interactivity they provided. A user might be able to
request information and pose queries through a “fill in the blanks” form-based
interface (e.g. retrieve the sequence with accession number x, or perform a
BLAST[4] search against database y with sequence z). The information would be
returned either as another web page (perhaps containing some “clickable” but
otherwise-static images) or as an e-mail message. “Interacting” with the resulting
data consists of navigating through it in a web browser or scrolling through the tens
or hundreds of pages of results in a text editor.

Using JavaTM, however, it is possible to implement widgets like those found in
bioTk and have them run as applets—on any PC equipped with a web browser.
Since Java™ support is an integral part of all major web browsers, it is possible to
implement almost any imaginable user interface in this manner. For this reason,
among others, the bioWidgets project has chosen an object-oriented approach to
visualization component design and has standardized on the Java™ language for its
specification and implementation efforts.

—

257

Visualization Solutions

Turnkey solutions have enjoyed ready acceptance and widespread use in the
genomics community. ACEDB[5], for example, is a genomics database system which
also provides an extensive visualization-oriented user interface. But, as noted earlier,
using such systems entails an all-or-nothing commitment. Were they instead
implemented in a component-based framework, they would be able to take advantage
of new components developed by others. Furthermore, other developers would be
able to extract useful components from these packages and reuse them in ways
perhaps not originally envisioned by their designers.

There are a number of groups and individuals working on JavaTM-based graphical
user interfaces for bioinformatics applications: Jean Thierry-Mieg’s JavaTM port of
ACEDB, JADE[6]; the genome browser of Gregg Helt[7]; Andrei Grigoriev’s
DerBrowser[8]; and GDB’s MapViewer[9] application are but a few examples.

What differentiates bioWidgets from these standalone applications is the intent to
provide not just finished applications but also the underlying components and, more
importantly, a framework or architecture for integrating them. This bioWidget
architecture specifies how bioWidgets written by different developers interact to fit
into the “big picture” of a finished application. It also empowers application
designers to make choices at all stages of the design and implementation process.
The decision to use a particular widget or set of graphical front-end components
should not lock a developer into using a specific database system in the application’s
back-end.

To date, we have concentrated on developing displays for “linear” genomic data.
In particular, we have constructed bioWidgets and applications for displaying the
following kinds of data:

Sequence alignments

Chromosomes and karyotypes (see Figure 1)

Maps (physical, genetic, STS content, radiation hybrid, etc.)

BLAST results (see Figure 2)

Sequences (DNA and protein) and annotation (see Figure 3)

Multiple map alignments (see figure 4)

DNA traces (i.e. ABI machine output)

The bioWidget Architecture

The bioWidget architecture is an adaptation of the Model-View-Controller (MVC)
paradigm [10]. A “model” is an instance of domain data (e.g. DNA sequence data); a
“view” is a visual representation of the model (an application may include more than
one view of a model); and a “controller” interprets external input (e.g. from a user)

258

and updates a model accordingly. When the model is updated the view receives
notification and updates its representation accordingly.

In our case, the model is defined as a set of Java™ interfaces. An interface is
an abstract specification of functionality in the form of a set of method signatures.
Using interfaces allows us to define a model without detailing how the model will be
implemented. A critical step in defining a widget is defining the model of which it
will be a view. Because a widget is designed for reuse throughout the genomics
community, its model must be generic enough so that it will not be inconsistent with
data models used by would-be consumers. The philosophy therefore in defining
models for bioWidgets is to keep them as simple as possible.

Here is the interface that defines the model of (ungapped) sequence used by
our sequence widget:

public interface SequenceReadOnly {

public int getFirstChar();

public int getLastChar();

public String getSubSeq(int first, int last);

public Interval[] getSelectedIntervals();

}

In this case, sequence is viewed simply as a string that can easily provide sub-
strings and that also has a set of selected sub-intervals. Because this interface is easy
to satisfy, it allows data to be read into the bioWidgets from flat files, databases
(possibly using the JDBC™[11] database access specification), or even directly from
other widgets or applications, using remote communication protocols such as MI or
CORBA[12]. Components called transducers do the job of translating data in
disparate formats into objects satisfying the interface specifications recognized by the
widget. Note that, in terms of performance, the above interface does not require that
the sequence be stored as a string. It could be stored in a compressed format and
decompressed on the fly in response to getSubSeq requests. It is the widget’s
responsibility to ask for only that part of the sequence it needs, so that the entire
sequence need not be duplicated in every view.

In addition, the MVC approach ensures that any updates to the underlying
databases or data sources are immediately propagated to the widgets’ displays.
Another feature of the bioWidget architecture-the use of multiple concurrent
Threads of execution—ensures that the widgets will not freeze while performing
such updates; the user will be able to continue to interact with the widgets while they
incorporate new or updated data into their displays.

259

The architecture also exploits Sun’s own generic component architecture,
JavaBeans™[13]. JavaBeans™ are components written in JavaTM that publish the
information required by application builder tools. These builder tools allow users to
interactively configure and connect beans. By requiring that the bioWidget models,
views and controllers conform to the JavaBeans™ specification, we ensure that these
components can be integrated into useful applications using standard JavaBeans™
integration tools.

bioWidget-Based Displays for Genome Annotation

Figure 3 depicts the graphical interface of GAIA[14], a system developed at CBIL to
perform automated annotation of genomic sequence. Sequence and map bioWidgets
are used in the system’s web-based interface, which allows users to examine the
annotation on sequences they have submitted. We will use GAIA to illustrate a
number of the features provided by bioWidgets, particularly those that require
communication between the bioWidgets and a surrounding application; i.e. those that
depend on the bioWidget architecture.

The two widgets in the figure are displaying the same sequence entry from the
GAIA database, the map widget (upper right) giving a high-level overview of the
annotation, and the sequence widget (lower right) showing the actual DNA sequence,
along with the same annotation in a slightly different form. From the perspective of
the bioWidget architecture, the sequence widget is a view of a sequence model; and,
both the sequence widget and the map widget are views of a shared model of
sequence annotation. The widgets interact with the rest of the application (including
the GAIA back-end and the web browser, which can be used to retrieve textual
descriptions of the various analysis results displayed in the widgets) to provide a
number of useful functions.

Coordinated Selection

Clicking on a particular annotation in the map widget selects (highlights) the
annotation, and displays a short description in the widget’s status bar. The sequence
widget responds by jumping to the region of the sequence occupied by the feature
and highlighting the corresponding DNA fragment. This behavior is a direct result of
the sharing of an annotation model. In response to the user’s actions, a controller
marks that particular annotation in the model as “selected”, and both views respond
by highlighting and jumping to the annotation. The messages that travel between the
model and the view to accomplish this are defined as part of the model’s JavaBean™
specification.

Coordinated Scrolling and Zooming

The map viewer contains an icon that looks like a tall “H”. This icon serves to
indicate what region of the sequence is being displayed in the sequence widget
(which usually presents less of the sequence, but in more detail). Scrolling the

260

sequence widget causes this cursor to move in the map widget and, conversely,
dragging the cursor around in the map widget will scroll the sequence widget. Once
again, an underlying model facilitates this behavior. Both the sequence widget and
the H cursor are views of an “interval” model that represents what part of the
sequence should be displayed. Another instance of this kind of coordination appears
in figure 4, in which a sliding control embedded in a chromosome widget controls the
viewing area of a multi-map widget.

Additional Features

In addition to those features provided by the bioWidget architecture, the individual
widgets themselves have a number of useful facilities. The sequence widget can
display graphs computed dynamically from the sequence it is displaying; for instance,
percent-GC content for DNA, as shown in figure 5, or hydrophobicity for
polypeptides. It can also display the conceptual protein translation of a DNA
sequence in any reading frame, using whatever genetic code is desired. A simple cut
and paste facility allows sending a subsequence of interest to an external program for
further analysis. Menus allow users to specify preferences for colors and fonts, and
simple printing to a Postscript file is supported. Annotation displayed in the map
widget can be classified into groups, for example, by organism, type of annotation,
laboratory of origin, and so on. Groups can be shown or hidden to aid in filtering the
available information.

Who uses bioWidgets?

Software can be reused at a number of different levels, by users with correspondingly
varied needs. We intend to target three principle groups of bioWidget users. The
first group of users consists of those who are looking for complete (but still
component-based) solutions. To this group we provide standalone JavaTM applets
that can be embedded in web pages, taking input from files in standard formats (e.g.
FASTA[15]) and providing sensible default behaviors. In this mode of operation the
bioWidgets can be put to immediate use, but a user’s configuration options are
limited by what parameters can reasonably be encoded as HTML tags in a web page.

A user from the second group wishes to construct or customize an applet or
standalone application, but without doing any JavaTM programming. This is the
JavaBeans™ user group, to which we provide a set of components defined according
to the JavaBeans™ specification. The bean versions of the bioWidgets can be wired
together to form an application using a visual development environment such as
JavaStudio™[16]. See figure 6 for a simple example of such an application; in this
case the user has drawn lines between the components to indicate that the database
access bean should send sequence data from GSDB[17] to the sequence display bean,
which in turn has been connected to a scrollbar bean. This kind of integration is

26 1

possible because the bioWidget architecture extends the standards put forth in the
JavaBeans™ specification.

Finally, the third group of users is comprised of Java™ programmers who wish to
use the bioWidget architecture to achieve a goal that cannot be accomplished by
connecting existing components. Examples include creating new widgets or reading
data in a completely new format into existing widgets. These users are users not so
much of the bioWidgets themselves, but of the underlying bioWidget architecture.

The bioWidget Consortium

The bioWidgets project has adopted a consortium model [18]. But, unlike groups
such as the OMG[19] and the ODMG[20], the bioWidgets project is concerned with
producing both specifications and implementations. Thus the consortium’s
administrative structure must facilitate and coordinate the release and versioning of
both design standards and also the programs and applications designed according to
those standards.

A Central Repository

The essential resource provided by (and to) the consortium is a central repository
both for finished components and software, and for technical proposals and/or
ratified and evolving standards and specifications. The repository is responsible for
versioning the bioWidgets, providing components to software developers and users,
and tracking subsequent bug reports and requests for additional features. These
reports and requests are in turn made available to anyone interested in working on
existing widgets, whether or not they happen to be the original authors. By acting as
a mediator in this fashion, the repository goes a long way towards guaranteeing the
components’ ease-of-use.

Quality Control

Nat Goodman’s group at the Jackson Laboratory maintains the consortium’s
central repository, and has also assumed the responsibility of providing quality
control for the entire endeavor. An essential part of any software sharing effort, the
quality control process ensures that, prior to submission into the repository, each
widget meets certain criteria with respect to documentation, engineering, and
reusability.

Future Work

We will proceed to develop new widgets to support the display of a wider variety of
data; future bioWidgets will handle data describing pedigrees, metabolic pathways,
2-D gels, gene expression arrays (SAGE, DNA chips, etc.), and database schemas.
The development of particular widgets will soon exploit the upcoming support in
web browsers for improvements in the Java™ language; these improvements address

262

such issues as printing and cutting and pasting. For example, one will be able to
select a sequence and paste it directly into a word processor document. Or one will
be able to copy sequences from a number of web pages and paste them into a
multiple alignment widget.

Finally, we hope to use the same facilities we have defined for inter-widget
communication to enable communication between the widgets and a variety of
remote data sources, in a more dynamic fashion. For example, one might highlight a
region of sequence and request a BLAST[20] or motif search. The widget would
communicate with a specialized remote server that would perform the requested task
and return the results directly to the widget for display and possible subsequent
analysis.

Using the widgets in this manner overcomes the main limitation of existing web-
based systems, namely that, for the most part, they have no memory of what a user
has done in the past, beyond what can be encoded in a URL. We also plan to expand
the power of the widgets to act as interfaces for composing and answering queries on
the data they display, rather than merely acting as browsers. This can be done by
integrating the widgets with the kind of flexible query engine provided by systems
like BioKleisli (see Chapter ??) and Multi-Database OPM (see Chapter ??).

Conclusions

The time has come for a component-based revolution in bioinformatics. The
software technology, including the World Wide Web, Java™ and its diverse
facilities, and other object-based component architectures such as CORBA will drive
the effort. The growing abundance of data in need of analysis, the commonality of
visualization needs across genomics applications and laboratory environments and
the limits of developer resources will combine to create an intense "market"for GUI
components. The bioWidgets Consortium will fill the necessary role of coordinator
of widget development efforts and dispenser of widgets, and the bioWidget
architecture will provide the technical backbone that ensures reusability and
interoperability.

References

1. Goodman, N., Rozen, S., and Stein, L. (1995) "The Case for Componentry in
Genome Informatics Systems". http://www-
genome. wi.mit.edu/informatics/componentry. html

2. Searls, D.B. (1995) "bioTk: Componentry for Genome Informatics Graphical
User Interfaces" Gene 163(2):GC1-16.

3. JavaTM language. http://www.javasoft.com/

263

4. Gish, Warren (1994-1997). unpublished. Altschul, Stephen F., Warren Gish,
Webb Miller, Eugene W. Myers, and David J. Lipman (1990). Basic local
alignment search tool. J. Mol. Biol. 215:403-10.

5. Durbin, Richard and Thierry-Mieg, Jean. (1991). A C. Elegans Database
(ACEDB). http://probe.nalusda.gov:8000/acedocs/acedbfaq.html

6. Stein, Lincoln and Thierry-Mieg, Jean. JADE. http://alpha.crbm.cnrs-
mop. fr/j ade/j ade. html

7. Helt, Gregg. Genome Browser.
http://fruitfly.berkeley.edu/javademos/GenomeBrowser.html

8. Grigoriev, Andrei. DerBrowser. http://www.mpimg-berlin-
dahlem.mpg.de/~andy/DerBrowser/

9. MapView. http://www.gdb.org/gdb/mapviewHelp.html
10. Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view

controller user interface paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, 1(3): 26-49, August/September 1988

1 1. JDBC™ database access API.
http://www.javasoft.com/products/idbc/index.html

12. The Common Object Request Broker Architecture (CORBA).
http://www.omg.org/

13. Java™Beans™ component architecture.
http://www.javasoft.com/beans/index.html

14. GAIA. http://agave.humgen.upenn.edu/gaia/
15. W. R. Pearson and D. J. Lipman (1988), "Improved Tools for Biological

Sequence Analysis", PNAS 85:2444-2448
16. JavaStudio™. http://www.sun.com/studio/
17. Genome Sequence DataBase. http://wehih.wehi.edu.au/gsdb/aboutgsdb.html The

bioWidget Consortium homepage at Jackson Laboratory.
http://goodman.jax.org/projects/biowidgets/consortium/index.html

18. Object Management Group (OMG). http://www.omg.ord
19. The Object Database Management Group (ODMG). http://www.odmg.org/

This page intentionally left blank.

22 ACEDB: THE ACE DATABASE
MANAGER

Jean Thierry-Mieg*, Danielle Thierry-Mieg*
and Lincoln Stein**

* Centre National de la Recherche Scientifique,
CRBM and Physique Mathématique,

1919 route de Mende
34293, Montpellier, France

** Cold Spring Harbor Laboratory
One Bungtown Road

Cold Spring Harbor, New York 11777 USA

Overview

The purpose of this paper is to review the main design problems involved in the
development of a genome database system and to describe the ace kernel, the stand
alone object oriented database manager underlying the C.elegans graphic “Acedb”
program.

The ace kernel can handle large amounts of heterogeneous data with a complex
evolving schema. It includes a query language and a basic graphic toolbox. It is
optimized for speed, memory allocation and disk usage. It has efficient crash
recovery and has been intensively tested over the years by demanding biologists.
More recently the kernel has acquired client-server capabilities, concurrent write
access, visibility over the network, a Java and a Perl interface.

The Ace kernel runs on any Unix workstation or PC with Linux; a port to
Microsoft Windows is in the testing phase. It is freely and immediately usable by any
interested party. Source code, binaries and documentation can be downloaded from
http://alpha. crbm. cnrs-mop. fr

History

Acedb was designed by Richard Durbin and Jean Thierry-Mieg to manage and
distribute genetic data on the nematode C.elegans. A survey at the end of 1989 had
convinced the authors that an object oriented architecture was desirable but that no
existing object oriented manager had the required capabilities to handle the complete
C.elegans dataset. A new system was developed from scratch in the C programming

266

language, a schema was chosen, the data was collated and the graphic C.elegans
Acedb was first released to the worm community in June 9 1.

Because the source code was made freely available from the start[1], Acedb was
rapidly adopted by communities working on a wide variety of organisms, including
the plant Arabidopsis (Mike Cherry, Sam Cartinhour, then John Morris), the fruitfly
Drosophila (John McCarthy, Suzanna Lewis, Frank Eeckman and Cyrus Hamon), the
yeast S.cerevisiae (Mike Cherry), comparative vertebrates (Jo Dicks and John
Edwards), edible plants (Doug Bigwood and Sam Cartinhour) and man (David
Bentley and also the Integrated Genome Database (IGD) project, with Otto Ritter,
Detlef Wolf, Petr Kocab, Martin Senger, Jaime Priluski). Acedb is also used in
several non-biological applications, including astronomy and semiconductor
manufacturing. A more complete list can be found in the Acedb FAQ (Frequently
Asked Questions list), first assembled by Bradley Sherman in 1994, and now
maintained by Dave Matthews [2].

A number of acedb workshops were organized, successively in Cambridge,
Boston, Montpellier, San Francisco and Cornell. They last a couple of weeks and
allow ample time for discussion and cooperative programming.

At the same time that it was spreading to other organisms, Acedb was becoming
more important to the Genome Project. It has been used by the Sanger StLouis
consortium, led by John Sulston and Bob Waterston, to manage data and annotate
over 100 megabases of DNA sequences and more than 1 million expressed sequence
tags (ESTs). As Acedb grew, we used its rich graphic interface for front ends to a
number of specific analysis programs, allowing trained users to build maps, find
genes (Phil Green) or display multiple alignments (Erik Sonnhammer). Direct live
interfaces to external programs (Blast, the OSP oligos selection program of LaDeana
Hillier, BioMotif of Gerard Mennessier and the Netscape Web browser) were also
made available. A complete system for sequence assembly and editing, called
Acembly, was built over Acedb and is distributed separately at
http://alpha.crbm.cnrs-mop.fr/acembly.html

The development over the last few years of the client server architecture,
described below, allows concurrent write access, overcoming the main limitation of
acedb in a multiuser environment.

The fact that so many programmers and end-users were using Acedb had both
good and bad effects. On the one hand, the speed and reliability of the database
manager and of the basic graphic tool box continuously improved, as bugs were
systematically chased and corrected in particular by Simon Kelley and Michel
Potdevin. Detlef Wolf contributed a series of regression tests called "Aquila" to
maintain code quality, and a commercial product called Purify was used to detect
memory leaks. By 1996 the database kernel had reached a very stable state.

267

On the other hand, most users came to Acedb not for its underlying data
management functions, but rather for the graphic displays contained in the X-
windows version of Acedb called xace. The displays represent maps of the
chromosomes at various scales (genes, clones, sequences), and allow users to jump
from one map to the other. This is complemented by multimaps and multiple
alignments, and other specialized data visualization tools, including a clone grid, a
gel with restriction fragments and an image viewer. At the beginning, these displays
looked very close to what most people wanted. But when each group tried to
customize the displays to its particular needs or to add new displays, a number of
difficulties became obvious. The graphic display code became always larger and
more heterogeneous. Despite lots of efforts, some of the graphical displays are still
buggy, some have complex and obscure user interfaces, and most remain
undocumented.

The management problem stems from the fact that in the original Acedb design,
the database manager, the biological graphic interface and the schema are
intertwined. The individual displays often rely on particular features of the schema,
creating rigidity and non-reusability. However, the schema, the graphics, and even
some of the low level library calls were not chosen for maximum generality, but to fit
the specific needs of the Nematode Genome project. Exacerbating this problem was
the fact that Acedb evolved over time as the needs of the nematode project changed.
As a result, the programs or variants that had been developed by other groups soon
became incompatible with the newer versions of the code developed for C.elegans.
This created frustration in the user community and several of the most active groups
eventually dropped Acedb.

The lesson is the following: because we distribute the source code, people can
recompile on any machine, fix bugs, and contribute new modules. This promotes
rapid development, but alone is not sufficient. A centralized control of the source
code is needed to keep the code base from diverging among a hundred mutually
incompatible paths. Otherwise it is impractical to try to put the egg back together
again by linking locally developed modules with the bulk of the distributed graphic
Acedb.

To cope with this situation, we now propose two complementary solutions. On the
one hand, we have redesigned most Acedb graphic displays for flexibility. They can
now be reconfigured at the data level without touching the source code. On the other
hand, we have developed a client/server architecture, with clients written in C, Java,
or Perl.

We would like to stress that the key to the solution is to disconnect the data
management schema from the application code. Otherwise, the application libraries,
even if they are written as external clients, impose backward compatibility and
progressively forbid any evolution of the underlying database. This problem is not
unique to Acedb and our experience and partial solutions may interest the developers
of other database systems.

268

The ace data definition language

Data in Acedb are organized in objects and objects are grouped in classes. Each
object belongs to a unique class, and has a name which is unique in its class. Rather
than having a fixed number of fields determined by their class, objects have a flexible
internal structure, organized hierarchically as a tree. This tree contains basic data
elements, such as numbers, character strings, and pointers to other objects, as well as
identifiers called "tags" that give structure and meaning to the tree. The database
schema consists of tree specifications, which in Acedb terminology are called class
"models". A formal BNF definition and several examples and tutorials are available
at [2]. Consider the following simple example:
?Person Paper ?Paper

Address Street Text
City ?City
State ?State

?City State ?State XREF Cities

?State Cities ?City XREF State

This schema defines models for three classes: Person, City and State, prefixed by
question marks, and six tags: Paper, Address, Street, City, State and Cities. Inside
trees, the symbols “?classname” represent pointers to objects in the specified class.
The XREF tells the system to maintain automatically the cross referencing between
State and Cities.

Note that in class Person, under the tag Address, we have three tags on equal
footing: Street, City and State. This nesting brings several benefits. First, it remains
clear when the model becomes complicated. Second, this construction provides an
automatic clustering of the contents. Any person for whom State is specified
automatically gains a partial Address and can be selected and retrieved on this
criterion allowing natural queries and automatic classification. Finally, this provides
a very simple way, explained below, of de-correlating the methods from the schema.

The tag[2] system

The greatest problem we encountered with the early versions of Acedb was a tight
coupling of the display to the schema, which has come to be known in the Acedb
community, particularly among data curators, as the "magic tag" syndrome. The
meaning is this: features presented in the applications and in the graphic interface
were obtained from the database by reference to explicit tags in the class definitions.

Consider a simple example where one wants to write a program for addressing
envelopes. The easy way is to look at the definition of class Person, to retrieve the
Street, City and State values and print them. But this piece of code turns the tags

269

Street, City and State into "magic tags". If a new curator defines his own schema and
replaces the tag State by the tag Country, this addressing method will no longer work.
As more and more methods are defined using class tags, the schema becomes totally
frozen and the database loses its versatility.

The solution came through discussions with Otto Ritter. Rather than accessing the
particular tags Street, City, State, we access the tag Address and collect everything
two to the right. We call this the tag[2] system (pronounced "tag-two"). Although
deceptively simple, this method does provide the desired decorrelation between the
data and the methods. Indeed, this new mailing method will now correctly send mail
to a sailor with a different sort of address:

?Sailor Address Ship ?Ship
Harbor ?City
Country ?Country

Constructed types

The nesting of tags under tags can be generalized and Acedb allows recursively
constructed types, indicated by specifying a model at a leaf position of another
model. This can be used either to specify named attributes of a relation or to define
an arbitrarily long list. Consider the following involved example:

-?Ship Cargo ?Goods #Cargo_info
Route #Route_element

#Cargo_info Owner ?Owner
Weight UNIQUE Float
Value UNIQUE Float

#Route_element ?City Int #Route_element
// The Int number represents the number of days

The cargo information is not directly a qualifier of the Ship, but rather an
attribute of the Ship/Goods relation, allowing to say that Tom owns 60 tons of
bananas aboard a given ship. The route information, which is recursively defined,
will consist of an ordered list of cities and travel delays.

In general, tags are multivalued, i.e. the Cargo of a given ship may consist of
several Goods, and a given piece of Goods may have several owners, but the
modifier UNIQUE ensures that each object has at most one Weight and Value.

Comments may be attached to any data element. They do not interfere with the
query language or the application routines, but they are indexed, which allows direct
retrieval of the objects containing them. In addition, every data element which is
added or modified is automatically time stamped with the date and the name of the
user. By the way, dates in Acedb are not subject to year 2000 problems!

270

The ace file format

When entering data, Acedb can be thought of as a data compiler. One prepares text
files, following a particular format called .ace (pronounced dot ace) format. One
submits them to the Acedb parser and the data are compiled into an internal binary
representation which allows the kernel to retrieve them easily when needed. Any
error in the data files, i.e. any data line which does not fit the schema is reported with
an error message and line number. One can fix the data file and read it again until
there is no error, in very much the same way as one would write and compile a
program in Fortran or other programming language.

In fact Acedb can be used simply as a high level syntax checking program. One
writes the schema, and parses the Acedb files to detect wrong tag names and ill-
formed data and then discards the compiled database and forwards the ace files to
some other system. An example of this is Common Assembly Format, which are .ace
files used in the Sanger and St Louis sequencing projects to exchange data across
assembly programs [3]

The following few lines constitute a valid ace file for the shema given in the
preceding paragraph:

Person Tom
City London

Ship Enterprise
Cargo Lemons Value 6732.5
Route Tangier 5 Bordeaux 8 "New York"
// Quotes are needed around New York
// to protect the blank space

Person Tom
State England

Acedb is cumulative, and different pieces of information on a given topic can be
entered in different paragraphs, as above for Tom, or even in different ace files. At
any time, the data can be re-exported in the same format. Acedb also allows data to
be exported as tables for use in a relational database or other program.

An important effect of the syntax is the ability to exchange data between databases
with different schemata. The first line of each paragraph is a class name. Then each
line starts with a tag which is recognized by considering the model of that class. The
intermediate tags, address in this example, are not needed in the ace file, they are
reconstructed by the system. Hence, if in the target database, the tag Street is located
in a different position, the data can still be read.

Furthermore, it is possible to edit the schema of the database without losing the
current data, so that when one receives some new type of information one can add it

27 1

to a running database after editing the schema in an adequate way. Acedb curators
use this method and usually distribute schema modifications with each new data
release.

Comparison with other databases

When comparing Acedb with other systems one should bear in mind that today two
broad categories of database are in use. Relational systems, like Sybase and Oracle,
organize the data in tables, a little like phonebooks. Object oriented systems like O2,
Objectstore, OPM, Matisse or Acedb organize data in clumps, like a patient record
kept by a physician. Relational systems are best when the schema is simple, the data
are regular and successive queries are independent. Object systems are best when the
schema is complex, the data irregular and the queries correlated.

In biology and any other experimental science, one knows a lot in a few cases, and
little in most others. This makes relational systems inefficient since one has to
maintain and explore many quasi empty tables. In addition, one often wishes to start
somewhere and progressively explore the surrounding area. However, relational
systems do not have the concept of neighbors, so these local explorations are not
automatically optimized. Whereas in object systems small objects cost little and the
direct links between related objects, create a natural topology.

These two characteristics thus favor, in experimental sciences, the choice of an
object oriented system. On the other hand, relational systems, which are very well
adapted to commercial activities, are well supported, offer the advantages of industry
standardization and the ability to handle large numbers of concurrent clients. For
these reasons many attempts at adapting relational systems to represent biological
data have been made.

We think that it is fair to say that, when the schema is complex, relational
databases are much more difficult to maintain than object-oriented systems. A case
in point is GDB, which, after many years of maintaining a complex relational
schema, ultimately migrated to a hybrid system: the schema is defined in the OPM
object-oriented data definition language but the data are stored in Sybase.
Performance does suffer from this union, but the system designers felt that the gain in
maintainability was worth the loss in performance.

The data definition languages of the object oriented systems, O2, OPM,
Objectstore and Acedb are very similar. There is however a subtle difference in the
way the data are considered. In Acedb, the objects are fully exportable using our
generic data exchange system, the .ace format. In these other object-oriented
databases, a similar tool is missing, not because it would be so difficult to develop,
but because in these systems, objects have a hidden internal identifier which cannot
be exported. Two objects in O2 can have all their fields identical and yet be
considered different, whereas in Acedb an object is completely identified by its name
and class.

272

Finally, Acedb is easy to configure because the schema of the database is itself
treated as an object. This implies that it is possible to refine or modify the schema of
a running ace database without losing the existing data. It is not necessary in Acedb
to design a priori the complete schema. Rather, one can start with a minimal canvas
and extend it when more data become available. The design of the database is
progressive and data driven.

Yet another interesting system is the Boulder input/output language defined by
Lincoln Stein [4]. A boulder file is very similar to an ace file, but without any
underlying schema. It is divided into paragraphs called "stones", separated by a
record delimiter character. Each data line starts with a tag name followed by some
data, in a format that can be parsed without a knowledge of the data semantics. The
system is designed to allow programs to be piped together. Each program accepts
and emits a stream of Boulder stones. As stones flow along the pipe, each program is
free to extract or modify the tag lines it is interested in and reexport the stream. The
data repository is the Boulder stream itself. It has no schema, no exact boundary, and
no clearly identified hardware localization. In fact, Boulder is not a database system,
and does not support queries, but it is very light and most convenient in a production
environment. Boulder and acedb are highly compatible, since an ace file is a valid
Boulder file and an ace model can always be constructed by inspection of a set of
boulders.

The query language

In the first Acedb release in 1991, one could only search for a given word and then
browse through the graphic hypertext and map displays. Acedb browsing is faster but
similar to the more recent Web user interface originally defined by the Mosaic Web
browser. It is easily picked up by end users. However, one often needs to ask specific
questions.

Relational databases offer a standard query language called SQL, but in 1991,
there was no equivalent for object oriented databases. Therefore, we developed and
implemented in Acedb a simple language allowing the selection of subsets of
objects satisfying certain properties and navigation to their neighbors. For example
one can select the prolific authors with the query:

Find author COUNT paper > 100

Or the alleles of the genes on chromosome III with:

Find Gene Map = III ; Follow Allele

To write those queries, one needs to learn the syntax and the schema of the
database. For example, and this is not intuitive, one must know that in the C.elegans

273

database the class Map refers to the genetic map of the chromosome. To facilitate the
composition of queries, John McCarthy, Gary Aochi and Aarun Aggarval added to
the Acedb graphic interface two helpful tools, Query-builder and Query-by-example
which prompt the user for the correct fields and the correct syntax. Once written, the
queries can be named, saved, reused and may contain positional runtime parameters.

This language, which acts like a SQL Select statement, is complemented by Table-
Maker, a graphical tool that leads the user through the steps of creating a tabular view
of a portion of the database. Table-Maker allows the gathering of data from multiple
object classes into a summary report for the purposes of visualization or data
exportation. The table definition can then be saved and reused. In graphic mode, the
complete table must be held in memory, and on normal machines this limits the
length of the returned table to a few thousand lines. But after several rounds of
optimization, the current acedb_4.5 release can export in text-only mode arbitrarily
long tables without using much memory. Release 4.7 will incorporate a fuzzy logic
layer which greatly accelerates the selection of rare objects and is the result of many
years of discussions with Otto Ritter.

The present system is efficient, expressive and well tested, but it is non-standard,
and the table definitions are hard to compose outside of the graphic interface. In the
meantime, the 02 group has developed the object query language OQL[5] which was
adopted as a standard by the Object Definition Management Group ODMG. OQL is
a large system, with nice features like the dynamic construction of new objects, but it
is often clumsy; for example the syntax of a query differs if a field is single or
multivalued, and OQL does not support well the recursivity of the Acedb schema.
Other proposals, like Lorel [6], are closer to Acedb. Following those ideas, Richard
Durbin started last year the design of a new query language for Acedb, which may be
available by the end of 1998. This should simplify the querying of the database from
external clients and allow more general questions.

Client server

Acedb is mostly used as a standalone single user program, and indeed it runs well
even on a low-end system. For example, the full C. elegans database is very useable
even on a 133 MHz PC laptop running Linux. However, we have also developed a
TCP/IP-based client/server architecture intended for heavy multi-user applications
and Web-based interfaces. The server runs as a Unix network daemon, listening for
requests from incoming clients, and replying with textual or graphical representations
of objects (the latter are returned as binary GIF images). Data can be imported into
the server locally or remotely in the form of .ace files, or bulk-loaded from FASTA
files (nucleotide and protein sequences only).

Several clients are defined: a simple dialog interface called aceclient, which has a
very small overhead and is convenient to use interactively over a slow network or to
embed within a shell script; a simplified restricted interface called jade2ace, which
we use to communicate with Java clients, a complete Perl interface called AcePerl
which is convenient for scripting, and finally a fully graphic client called xclient,

274

which is functionally equivalent to the graphic Acedb code but gets its data
transparently from a remote server.

Xclient must be installed on the client machine. When the xclient is running, data
is imported on the fly from the distant server and used to construct a local database.
The resulting system is fast, even on a slow network, because most actions operate on
locally cached data. Xclient can be used in two ways. Inside the lab, it allows
multiple clients to get simultaneous write access on the server, a feature that was
lacking in xace. Over the network, it allows users to access the latest data without the
need to download a complete data set. Xclient may be downloaded from our Web
site. By default, it is configured to access our C.elegans server. Instructions to
redirect the client or to create a new server are included.

Web interface

The standard graphic acedb, xace, uses the X11 protocol. It does work over the
network but only by starting a big process on the server side, which is costly and
requires special privileges. Xclient, described above, needs to be installed before it
can be used and only runs on Unix machines. In this section, we explain how Acedb
databases can be viewed over the Web using conventional Web browsers, without
any special effort from the end user.

The first implementation of Acedb over the Web was written as early as 1992 by
Guy Decoux. Called the Moulon server, it was surprisingly complete but very slow,
because a new Acedb process was started to process each request.

When the aceserver became available, Doug Bigwood's group at the National
Agriculture Library–developed Webace. We wrote together a special module to
export Acedb objects in a form that could be compiled into Perl objects by the Perl
interpreter. These objects were then enriched outside of Acedb by other-Per1 layers
that add hot links. For example, GenBank accession numbers are automatically
converted into links to NCBI Entrez pages. Webace also allows several Acedb
databases to be browsed simultaneously. The downside of Webace is that installation
is somewhat complex; however it is very powerful and the NAL Webace server is
actively used to access data concerning a large number of cereals and other
interesting plants. Webace is now maintained by Tim Hubbard
http://webace.sanger.ac.uk.

Two years ago, we started with great enthusiasm to work on a Java interface to
Acedb. We designed a system called Jade [7] which may be used to browse different
types of servers, including Acedb databases, relational databases, or even simple flat
files. The low-level interfaces that allow Acedb objects to be converted into native
Java objects are complete and quite useable, but the development of a graphical user
interface to replace the xace displays has lagged behind. This is partly because of the
immaturity of the Java abstract windowing toolkit (AWT), and partly because we

275

were waiting for the Biowidget Initiative to provide a ready-made toolkit of graphical
displays. Now that Biowidgets has faltered, we have resumed development of Java-
based interfaces.

This year, we wrote a new Perl client library called AcePerl. It is well documented
and easy to use and provides a simple way for a Perl script to read, modify and write
the data contained in one or several aceservers. In conjunction with the CGI Perl
module, an earlier work from Lincoln Stein, AcePerl provides a simple way to
browse Acedb data from a personal Web page.

The remaining question is the construction of a real graphic page on the Web. The
first approach is to directly export a graphic from acedb. The original Moulon server
asked for a postscript print out and turned it into a gif file. This was simplified in
Webace when Richard Durbin used the gif library from Tom Boutell to directly
export gif documents from acedb, a feature now incorporated in the aceserver. These
images can then be displayed by Webace, AcePerl or Jade.

However, the Acedb graphic displays with their popup menus, linked windows
and complex color codes are not well adapted to the Web, and interactions with the
server remain painful across a slow network. The solution is to do more processing
on the client side and we believe that the long term solutions is to write all the
displays in Java, once that language has fully stabilized, or in Perl, if a client-side
version of that language embedded into Web browsers becomes widely available.

Portability

Acedb is fully portable to all Unix machines, including PC/Linux and 64 bits
processors, like the alpha and mips chips. Some versions of the code were
successfully ported on the Macintosh (Frank Eeckman and Richard Durbin in 1992,
then Cyrus Hamon from 1994 to 1996). Finally, a Windows NT and Windows 95
version is under development by Richard Bruskiewich and is available as beta test
software on the Acedb sites. A database constructed on one platform can be used by
an executable running on another one.

Acedb is written in standard ANSI-C. Unfortunately, although things have been
improving over the years, this is not sufficient to insure portability. Most compilers
are not completely POSIX compliant and the system calls to read the disk, traverse
the file system, to run external subprocesses or construct a client/server network
connection diverge slightly but significantly. To circumvent this problem, we
carefully isolated from the start of the development of Acedb all the potentially
system-specific calls in a small collection of functions which we used throughout the
code, and we replaced everywhere the inclusion of the standard C library “stdlib.h”
by the inclusion of our own library of wrapper functions, allowing system calls to be
normalized across unusual machines. The result continues to be very rewarding.

1) Acedb can be adapted and recompiled on any Unix platform in a few hours.

276

2) When the first 64 bit machine appeared, the Dec alpha, we only had to adjust a
few low lying routine concerned with word alignment.
3) The port to the Mac and to Windows was greatly facilitated.
4) In the rare cases where some system calls give incorrect results on a given
machine, we can easily work around the problem by touching a single file.

An independent problem is the binary compatibility of the database. As you recall,
Acedb is a data compiler. It reads ace files and turns them into a binary database file
structure. Different machines have different word alignments and different byte order
(little and big endian). Simon Kelley solved this problem by introducing an optional
byte swapper inside the disk access routines which works the following way. When
you create a database with a given machine, acedb accepts the convention of that
machine. Thus if you always use the same machine, acedb never byte swaps.
However, if now you access the same database from a different machine with the
opposite convention, Acedb automatically detects the need to byte swap and will do
it transparently. The net result is that an Acedb database can be NFS accessible from
an heterogeneous set of computers, which would not be possible otherwise. In fact, a
Windows executable can read and edit a Unix created database.

Performance

In day to day use, Acedb usually seems very fast relative to other database systems,
even commercial ones. This statement is hard to quantify because it is notoriously
difficult to make comparisons among databases that vary widely in their schemas,
design and implementation. Furthermore, it is quite difficult to compare relational to
object-oriented databases, because there is no common measure concerning queries,
data insertion rate or transaction throughput that can be applied uniformly to both
types of systems. For this reason, we will try to give a subjective assessment of
Acedb speed through a series of anecdotes.

Acedb is naturally optimized to handle point and browse queries that account for
more than 95% of its use. However, when dealing with very large objects, acedb can
occasionally be very slow, but no more than a relational system when forced to make
a join across the dozens of tables required to represent an object hierarchy. Note that
huge objects in acedb are in general the result of an inadequate design of the schema.
For instance, in the example above, we have cross referenced State and City but not
Person and City. Otherwise, a given city, say London, could point to a hundred
thousand Persons and become very heavy to manipulate. In such a case, the adequate
way to maintain a dynamic list of the
London dwellers is to use an acedb subclass.

The C.elegans data set contains half a million Acedb objects and can be loaded on
a pentium-200 PC running Microsoft Windows in around one hour. On a similar
machine running Solaris, we can export from the St Louis Merck EST database a

277

table of 13 columns and 1 million lines in 16 minutes. For the IGD project, we were
able to load on a DEC alpha a large data set consisting of GDB, GenBank, SwissProt
and several dozen smaller databases into acedb. Once loaded, Acedb was able to
complete a test suite of queries on this data set in 3 minutes as opposed to 30 minutes
for a Sybase server on the same machine.

It is crucial, however, to run the database on a local disk. If the database disk is
mounted over NFS, or on a RAID system, performance easily degrades by a factor of
10. In such a case, to produce a very large table, it is much faster to ftp the whole
database onto a local disk, run the table query and destroy the database, than to run
the query off the remote disk.

How does the storage capacity of Acedb compare to other database management
systems? Comparisons with relational systems are difficult because of the
impossibility of relating relational tables to objects. However, we can compare
Acedb to other object oriented systems. The present C.elegans data set contains 500
thousand objects and uses half a Gigabyte of disk space. Direct comparisons of
storage capacity by counting the number of objects may be misleading because it
depends on the expressive power of the grammar. For example, Gilles Lucato and
Isabelle Mougenot at LIRMM wrote an automatic Acedb to Matisse translator. Extra
classes were needed in Matisse to store the Acedb structured tags and as a result, the
C.elegans dataset in Matisse is spread over several million objects and takes several
times more disk space. Illustra also uses more diskspace. We have been told that 02
performance degrades at around 50 thousand objects on similar machines.
Objectstore databases are memory mapped to disk, this places a strict limit of 4
gigabytes on conventional 32-bit architecture machines. Acedb has no such hard
limit, but typically one needs 50 bytes of memory and 1 kilobyte of disk space per
object, effectively limiting acedb to one million objects and 1 gigabyte of disk on a
128 Mb machine.

How to get the software

The whole Acedb system, including the Java and Perl tools and demos, and the
Acembly package are available from our Web page http://alpha.crbm.cnrs-mop.fr.

The C.elegans data and Acedb source code may be downloaded from
ftp://ncbi. nlm.nih.gov/repository/acedb/ in the US
ftp://Airmm.lirmm. fr/pub/acedb/ in France
ftp://ftp.sanger.ac. uk/pub/acedb/ in England

Documentation, tutorials and examples are maintained by Sam Cartinhour and Dave
Matthews on the US site http:probe.nalusda.gov:8000/acedocs/index.html

278

Conclusion

The Ace kernel is a versatile database manager. It is fast, easy to configure and has a
powerful grammar. Since the source code is available, it can be recompiled on any
platform and many people have contributed modules and corrections. The client
server architecture and the Perl and Java interfaces make it suitable for any
application where the schema is complex and the data heterogeneous. The Ace kernel
can be used independently of the graphic interface.

We believe that the Ace kernel is sufficiently fast and robust to support the human
genome sequencing project as well as it has supported the C.elegans project and plan
to continue to improve its speed and quality over the next years. We also welcome
innovative uses for Acedb outside the biological community.

Acknowledgments

This work was supported in part by the European contract IGD-GIS/BMH4-ct96-
0263.

We are greatly indebted to Richard Durbin for years of collaboration, and to all
the people who helped us to write to test and to document the ace system, those we
quoted, and those we did not. But we want also to thank the many users who for years
have endured all the bugs, complained little, suggested a lot and suffered much, in
particular LaDeana Hillier and Simon Dear.

[1] ftp://ncbi.nlm.nih.gov/repository/acedb

[2] http://probe.nalusda.gov:8000/acedocs

[3] Simon Dear et al. Sequence assembly with CAF tools, Genome Research 8, 260-
268, 1998.

[4] http://stein.cshl.org Lincoln Stein et al., Splicing Unix into a genome mapping
laboratory. Usenix summer technical conference, 22 1-229, 1994

[5] R.G.G Cattell, The object database standard: ODMG-93, MorganKaufmann, San
Francisco, California, 1994

[6] Serge Abiteboul et al., The Lorel query language for semistructured data. Journal
on digital libraries, 1, 23-46, 1997.

[7] Lincoln Stein et al., Jade: An approach for interconnecting bioinformatics
databases, Gene, 209, 39-43, 1998.

23 LABBASE: DATA AND

LARGE SCALE BIOLOGICAL
RESEARCH

WORKFLOW MANAGEMENT FOR

Nathan Goodman *, Steve Rozen **,
and Lincoln Stein ***

* The Jackson Laboratory, Bar Harbor, ME
** Whitehead Institute Center for Genome Research,

Cambridge, MA
*** Cold Spring Harbor Laboratoy, Cold Spring Harbor,

NY

Introduction

Laboratory informatics is an essential part of most large scale biological research
projects. A key element of laboratory informatics is a laboratory information
management system (LIMS) whose purpose is to keep track of experiments and
analyses that have been completed or are in-progress, to collect and manage the data
generated by these experiments and analyses, and to provide suitable means for
laboratory personnel to monitor and control the process.

While information management systems are ubiquitous in modern commerce, the
demands of biological research pose different and difficult challenges [1-3].
Biological research projects entail complex, multi-step procedures (called
“protocols”) typically with multiple branch points and cycles. Such protocols
involve a combination of laboratory procedures and computational analyses. The
former may be carried out manually by laboratory personnel, or in an automated
fashion using robotics or other forms of instrumentation, or (most often) by a
combination thereof. Computational analyses may be carried by programs developed
internally, or by ones supplied by academic or commercial third parties, or
(increasingly) by public or proprietary Web servers; some analyses are simple and
fast, while others may consume hours or days of computation and may require

280

dedicated computing equipment. Special cases requiring atypical, one-of-a-kind
treatment are common. Laboratory procedures inevitably fail from time-to-time, and
graceful handling of failures is essential. The data types themselves are complex and
may be related in complicated ways. Superimposed on this intrinsic complexity is a
rapid rate of change: research laboratories are staffed by highly trained and motivated
scientists who continuously strive to refine old techniques and invent new ones in the
never ending struggle to do the best possible science. Frequently, old and new meth-
ods must coexist as new methods are developed and prove their worth. A not
infrequent occurrence is for a promising new method to enter service only to be
retracted as unforeseen problems arise.

We have been pursuing a strategy for laboratory informatics based on three main
ideas [4-7]: (1) component-based systems; (2) workflow management; and (3)
domain-specific data management. The basic ingredients of our strategy are
application programs, called components, which do the computational work of the
laboratory project. Components may be complex analysis programs, simple data
entry screens, interfaces to laboratory instruments, or anything else. We combine
components into complete informatics systems using a workflow paradigm [8-10]. It
is natural to depict such systems as diagrams (cf. Figure 1), reminiscent of finite state
machines, in which the nodes represent components, and the arrows indicate the
order in which components execute. We refer to such systems as workflows. As a
workflow executes, we store in a database the results produced by each component,
as well as status information such as which components have executed successfully,
which have failed, and which are ready to be scheduled for future execution. We use
specialized data management software to simplify this task.

This article describes the workflow and data management software we have
developed pursuant to this strategy, called LabFlow and LabBase respectively.
LabFlow provides an object-oriented framework [11] for describing workflows, an
engine for executing these, and a variety of tools for monitoring and controlling the
executions. LabBase is implemented as middleware running on top of commercial
relational database management systems (presently Sybase and ORACLE). It
provides a data definition language for succinctly defining laboratory databases, and
operations for conveniently storing and retrieving data in such databases. Both
LabFlow and LabBase are implemented in Perl5 and are designed to be used
conveniently by Perl programs.

Figure 1: Sample Workflow

28 1

We will use as a running example a hypothetical laboratory project whose purpose
is to sequence and analyze a large number of cDNA clones drawn from several
libraries. A database for such a project would store information about (i) the libraries
being sequenced, (ii) the clones picked for sequencing, (iii) sequence-reads
performed on those clones, (iv) assemblies of sequence-reads (to coalesce multiple
reads from the same clone, and to detect and exploit situations in which duplicate
clones are picked), and (v) analyses of assembled sequences. The system would
include many components, including (i) software to control robots involved in clone-
picking and preparation of sequencing templates, (ii) base calling software, (iii)
software to strip vector and for quality screening of raw sequences, e.g., to detect E.
coli contamination and check for repetitive elements, (iv) sequence assembly
software, (v) sequence analysis software, and (vi) some means for laboratory
personnel to review the results.

LabBase and LabFlow are research software and are incomplete in many ways.
We will endeavor to point out the major holes that we are aware of. The software is
freely available and redistributable (see http://goodman.jax.org for details).

LabBase Data Management System

LabBase provides four main concepts for modeling laboratory (or other) databases:
Objects, Materials, Steps, and States. Objects are structural objects, similar to those
found in ACEDB [12], OPM [13], lore [14], UnQL [15], and many other systems.
Materials are Objects that represent the identifiable things that participate in a
laboratory protocol, such as libraries and clones. Steps are Objects reporting the
results of a laboratory or analytical procedure, such as sequencing a clone, or running
BLAST [16] on a sequence. States are Objects that represent places in a laboratory
protocol, e.g., “ready for sequencing” or “ready for BLAST analysis”. We use the
term object (lower-case) to refer to any kind of Object including a Material, Step, or
State.

The most compelling feature of LabBase is that it provides built-in support for
two relationships among Materials, Steps, and States that lie at the core of typical
laboratory databases. One is a relationship connecting Steps to the Materials upon
which they operate. When a Step is stored in the database, LabBase automatically
links the Step to its operand Materials in a chronological history and provides a
means to access Step-data directly from these Materials; for example, one can
retrieve a clone’s sequence or a sequence’s BLAST analysis by querying the
respective Materials rather than the Steps. The second built-in relationship connects
Materials to States. When a Material is created, LabBase provides a means to place
the Material in an initial State; then as Steps operating on the Material are created,
the system provides a means to move the Material to the appropriate next State
thereby tracking its progress through the protocol. Both of these relationships are
many-to-many. We discuss these relationships further when we describe LabBase
operations.

282

To create a database for a specific laboratory protocol, the main tasks are to give
names to the Materials and Steps of interest, and to describe the data to be reported in
each Step.

Steps are generally obvious, because they correspond to the actual work being
done in the laboratory protocol. The main subtlety is ensuring that Steps correspond
to useful points of contact between the laboratory and the computer. In our running
example, possible Steps include ones reporting (i) that a library has been constructed,
(ii) that a clone has been picked and plated, (iii) that sequence-template has been
prepared from a clone, (iv) that sequence-template has been loaded onto a sequencing
machine and run, (v) the results of a sequencing-run, e.g., base-calls, quality
indicators, and chromatographs, (vi) the results of vector stripping and quality
screening of sequencing results, (vii) the results of assembling sequences, and (viii)
the results of analyzing sequence-assemblies.

Many Materials are equally as obvious, because they correspond to the major
reagents employed in the protocol, e.g., libraries and clones, or the major data
produced by the protocol, e.g., sequence-reads and assemblies. As with Steps, the
main danger is excess: Materials should only be defined for things that are really
worth tracking. Limitations in our current software push strongly in the direction of
parsimony. The mechanism mentioned above for connecting Step-data to Materials
only works for Steps operating directly on a Material; it does not work transitively
over related Materials. While it is easy to get the base-calls for a sequence-read, and
a list of all sequence-reads for a given clone, and a list of all clones picked from a
library, the software offers no special help for getting all base-calls for all sequence-
reads for a given clone or library. A second limitation is that LabFlow (see later
section) only supports workflows in which a single kind of Material marches through
a protocol. The effect of these limitations is to encourage database designs in which
multiple real-world material are elided into a single database-Material. In our
example, it would probably be best to represent libraries as Objects (not Materials),
and to merge clones and sequence-reads into one Material; assemblies would
probably remain as separate Materials. The end result is a database with just two
kinds of Materials: sequence-reads and sequence-assemblies.

To recapitulate, the database for our running example would have just two kinds
of Materials, sequence-reads and sequence-assemblies, and many kinds of Steps,
each operating on one Material. One of the possible Steps listed earlier, namely, the
one reporting on library construction, must fall by the wayside, since we have
decided to represent libraries as Objects, not Materials; data on library construction
would be stored as fields of these library Objects. The most obvious, practical
shortcoming of this example database is that without a clone Material, we lose the
most natural means of coordinating multiple reads from the same clone. In the
database as given, one would probably coordinate multiple reads per clone in the
context of sequence-assemblies; this may be workable but is certainly not ideal.

283

LabBase Details

A LabBase object is a collection of fields. The data that may be stored in a field
include numbers, strings, nucleotide and amino acid sequences of arbitrary length,
sub-objects (called structs), lists, pointers to other objects (called object-references),
and several others. Objects, Materials, and Steps may not be stored in fields, although
references to these elements may be stored. LabBase makes note of the time each
object was created and who did the creation, and stores this information in special,
predefined fields of the object. Every LabBase object has a unique internal object-
identifier assigned by the system when the object is created; the system uses this
identifier to locate objects in the database and to connect objects together. An object
may also have an external object-identifier assigned by the client program; an
external object-identifier is similar to a primary key in a relational database.

LabBase objects are strongly typed: the system knows the type of every object, the
fields that may appear in the object, and the data types of the values that may be
stored in each field. A field may be mandatory or optional for a given type of object.
An optional field which is absent from an object is said to be NULL. Fields are
single-valued, meaning that each field contains a single value of its allowed type (or
perhaps no value if the field is optional). This is in contrast to the multi-valued fields
of ACEDB. Lists may be used to emulate multi-valued fields; it is possible to specify
that empty lists be treated as if they were NULL which is useful when using lists for
this purpose. LabBase provides no explicit support for compound attributes (e.g.,
pairs of x, y coordinates), but structs can be used to emulate this feature; it is possible
to specify that empty structs be treated as NULL which is useful when using structs in
this manner. Field-names are global, which means that if fields in two or more
object-types have the same name, they must also have the same type. This is unlike
most relational databases, where column-names are local to each table. LabBase
adopts this unusual property to facilitate retrieval of Step-data via Materials as
mentioned above and discussed further below.

A LabBase object is essentially a hierarchical record which is “object-like” in that
it has a unique identifier. LabBase is far from a full object-oriented database [17]
system lacking, among things, (i) support for inheritance or class hierarchies in any
general sense, (ii) user defined data types, and (iii) database support for methods (i.e.,
functions) applied to objects.

Technically, Object, Material, and Step are type constructors, not types. These
constructs are used to define types of objects, such as “clone”. Having done so, one
can then create actual objects (instances) of the types, e.g., an object representing a
specific clone. We say colloquially that a clone is a Material, but it is more precise
to say that a clone-object is an instance of the clone-object-type, and that the clone-
object-type is a kind of Material. We will avoid this circumlocution whenever
possible. By contrast, State is an actual Object; LabBase provides a predefined
object-type, called _state, and a State is simply an instance of that type. (By
convention, all system-defined names, such as _state, start with ‘–’).

284

LabBase supports a “fetch-and-store’’ database interface, also known as a “two-
level store”, similar to most relational databases [18]. Objects must be explicitly
stored in the database to create them and explicitly fetched from the database to
retrieve an up-to-date copy. Updates to an object must also be explicitly stored back
in the database.

The workhorse operations in the system are put which creates and stores objects
in the database, and get which retrieves objects or selected fields from objects
satisfying a condition. The “conditions” that can be specified in get (and other
LabBase operations described shortly) are far simpler than in many databases: an
operation can manipulate all objects of a given type, or all Materials of a given type
in a given State, or a single object denoted by its internal or external object-identifier;
this is an area for future improvement.

The put and get operations can be applied to Objects, Materials, and Steps, but
different options are legal depending on the type of operand; the various options have
been arranged to provide exactly the capabilities needed by LabFlow. When creating
Materials, put can place each Material into one or more initial States. When
creating Steps, put can be provided with a list of Materials upon which the Step is
operating. The system links the Step to each Material in a chronological history, and
can be instructed to move each Material from one State to another. When retrieving
Materials, get can move each Material to a new State. This is a convenient way to
indicate that the Materials are actively being processed by the client program and to
avoid anomalies that can result from two program processing the same Material at the
same time; this technique is sometimes called “application-level locking”. When
retrieving Materials, all fields of all Steps on the Material’s history are treated as
virtual fields of the Material itself and may be retrieved by get exactly as if they
were real fields of the Material. One important detail is that if the same field-name
appears in multiple Steps on a Material’s history-list, get retrieves the most-recent
one; in particular, if the same kind of Step operates on a Material twice, e.g., if a
clone is sequenced twice, get retrieves the results from the most recent application
of the Step. In addition, get can retrieve two other virtual fields maintained by the
system, namely, the list of all Steps that have operated on the Material (called its
history-list), and the list of all States in which the Material currently resides (called
itsstate-list).

LabFlow uses these operations in a specific pattern illustrated in Figure 2. First, it
uses put to create a Material and place the Material in its initial State. Then, as
laboratory or analytical procedures are performed on the Material, it uses get to
retrieve the fields of the Material needed to perform the procedure; these are typically
virtual fields obtained from Steps on the Material’s history-list; the get operation
also moves the Material to an “in-process’’ State (not shown in the figure) so that
other incarnations of the same procedure will not try to process the same Material.

285

When the procedure completes, LabFlow uses put to store its results in the database
as a LabBase Step, and to move the Material to its next State.

In addition to get and put, LabBase provides the following operations: count
returns the number of objects satisfying a condition; delete removes from the
database a set of objects satisfying a condition; update changes the values of
selected fields in an object or struct; set_states changes the States of Materials
satisfying a condition.

Every LabBase operation executes as an atomic transaction. For applications
requiring more control over transaction boundaries, the system provides operations to
begin, commit, and rollback transactions.

Figure 2: Interactions Among LabBase Operations, Materials, Steps, and States.

LabBase Summary

The facilities provided by LabBase make it easier to create a laboratory database by
automating commonly occurring database design tasks. Since Steps are
automatically connected to Materials, the database designer need not be concerned
with how these links are maintained. Since Steps are automatically preserved in a
chronological history, the designer need not be concerned with preventing updates
from overwriting previous data. Since Step-data can be queried via Materials, the
designer need not be concerned with storing laboratory results inside Materials, nor
with providing views for this purpose. Since objects can contain lists and sub-
objects, the designer need not be concerned with creating “link-tables” or similar
devices to implement these structures.

It would be useful to extend the system to handle commonly occurring rela-
tionships involving Materials. Our example illustrates several situations in which one
Material is derived from another; it would be useful for the system to “understand”
such relationships and to propagate Step-data from a derived Material to its source
and vice versa. Grouping is another common case, such as when a set of samples are
arrayed in a plate or on a chip. Part/whole relationships are common also.

286

LabFlow Workflow Management System

LabFlow provides a Perl5 object-oriented framework for describing laboratory (or
other) workflows, The most significant classes in this framework are Worker, Step,
and Router. Workers encapsulate the components which do the computational work
of the information system. The Worker class defines interfaces that allow arbitrary
programs to be connected to the workflow. Steps in LabFlow are analogous to those
in LabBase, but whereas in LabBase a Step merely records data, in LabFlow a Step
embodies the computation that generates the data, and the “glue” that connects the
computation to the rest of the information system. (The LabBase and LabFlow Step
concepts are so similar that we find it natural to use the same term for both). Each
Step has two parts: an input queue (actually a State) containing Materials that are
waiting for the Step to be performed, and a Worker which does the actually
computation. Technically, a Step need not contain a Worker or may employ multiple
Workers, but we will not discuss these complications. Routers connect Steps to-
gether by examining the answer produced by the Step (technically, the answer
produced by the Step’s Worker) and deciding where to send the Material for
subsequent processing. The LabFlow framework also includes classes for Materials
and States which are analogous to those in LabBase, and a LabFlow class to
represent entire workflows. LabFlow contains an “execution engine” that runs a
workflow by invoking its Step repeatedly. A LabFlow can be packaged as a sub-
workflow and used subroutine-style within another workflow. A key limitation in our
current software is that a given LabFlow operates on a single kind of Material.

The system uses States to keep track of “where” each Material is in a LabFlow.
We have already mentioned that States are used to represent the input queues of each
Step. In addition, each Step has three other built-in States. One of these holds
Materials that are actively being processed by the Step. A second holds Materials for
which the Step (or its Worker) discovered a problem that contraindicates further
progress, e.g., the Step checking for E. coli contamination would place contaminated
Materials in this State. The final built-in State holds Materials that were being
processed by the Step when its Worker or its component crashed; sometimes this is
just a coincidence, but often it reflects a bug in the Worker or component software.
In addition to these built-in States, the workflow designer is responsible for defining
States that represent successful completions of the workflow. The designer may also
define additional failure States, and States that represent points where the protocol
“pauses”.

The biggest job in creating a LIMS is to develop or acquire the components since
these do the actual computational work of the project. The next biggest job is to de-
velop the Workers since these must accommodate the idiosyncrasies of the
components. A typical system contains many Workers (dozens or more), and new
ones must be developed as the computational needs of the project change. It is
reasonable to expect that Workers may be reused in different applications, e.g., the

287

sequence-assembly Worker in our cDNA-sequencing example might be reused in a
genomic sequencing project. It is also reasonable to imagine that two or more
different Workers might be implemented for the same job using different
components, e.g., we might develop one sequence-assembly Worker based on phrap
[19] and another based on TIGR Assembler [20]. It is also reasonable to expect that
the same component might be used for several purposes, e.g., we might use a fast
sequence alignment program, such as FASTA [21] or crossmatch [22], for both
vector-stripping and contamination-checking. For these reasons, it makes sense to
organize the collection of Workers as a class library with well-defined interfaces that
are separate from their implementations, and to allow Workers to call each other. In
the long run, success with our method (and probably any other modular approach to
LIMS construction) depends on the accumulation of a well-designed library of good
Workers.

After Workers are developed, what remains is to connect them together into a
complete workflow. There are two main tasks: a Step must be created for each
Worker, and Routers must be defined to connect the Steps together. The main work
in defining a Step is to determine the mapping between the field-names used by the
Worker and those used by the workflow as a whole. (These field-names may be
different since Workers are written for reuse). Routers are generally straightforward
for success-cases, but can be tricky for failure-cases; often, in the early days of a
project, all failures are sent to a catch-all Worker that reports the event to laboratory
supervisors.

Let us apply these ideas to our running example. We will model the database as
suggested in the previous section, i.e., with two kinds of Materials, namely,
sequence-reads and sequence-assemblies. Since a given LabFlow can operate on
only one kind of Material, the overall system will need two LabFlows. We will only
describe the first. The sequence-read LabFlow needs Workers for robot-control,
base-calling, vector-clipping, quality-screening, and review by laboratory personnel.

Robot-control software generally comes with the machine and cannot be modified
by the customer; often the software runs on a dedicated computer, and can only be
operated by a person entering commands directly at that computer. The Worker, in
such cases, helps the human operator coordinate the robot with the rest of the system.
Assume for purposes of the example, that the outputs of the robotic procedure are (i)
a collection of plated clones, and (ii) a collection of plated sequencing-templates
derived from those clones, and that these plates are bar-coded. The most important
coordination task is to record the bar-codes of the plates in such a way that the each
clone-plate is associated with the corresponding template-plate (so that subsequent
sequence data can be associated with the correct clone). The Worker software for
doing this might be no more than a Web-based program that accepts bar-codes
(entered by the operator using a bar-code wand) two-at-a-time, and passes each pair
back to the Step.

Next comes base-calling. Assume that we use phred [23] for this purpose, and
that we wish to run phred in real-time on the data stream generated by the sequencing

288

machine. This requires that the Worker invoke phred on a computer directly attached
to the sequencing instrument. The output of phred consists of a collection of files
that can be stored in a network-accessible file directory. The Worker can monitor the
contents of this directory and report back when the procedure completes.

The next tasks, vector stripping and quality screening, are purely computational
and can be programmed straightforwardly to take sequence data as input, invoke the
relevant program, and capture the outputs for further processing.

The final job is for laboratory personnel to review the results. The Worker for
this Step might be a Web-based program with three stages. First, it presents a work-
list showing sequence-reads ready for review and allows a human operator to select
one or more sequences to review. Then, for each selected sequence, it presents an
appropriate display of the results and allows the operator to indicate whether the
sequence passes or fails. Finally, it passes the operator’s decisions back to the Step.
Based on this information, the Router for the Step would decide whether to move
each sequence to a final success State or to a failure State

The example illustrates many of the kinds of Workers that arise in practice. Some
Workers control or monitor external instruments. Some require human interaction.
Some invoke external programs which may have to execute on a particular computer.
As a general rule, we have limited ability (if any) to modify these external programs.
Though not illustrated, some Workers interact with external servers, e.g., a BLAST
server to analyze sequence-assemblies. Also not illustrated, some Workers are so
simple that they may be implemented as Perl modules that run in the same process as
the LabFlow engine itself.

LabFlow Details

The LabFlow execution engine runs a workflow by invoking its Steps. The execution
engine groups Steps into “execution units” and initiates one or more operating-
system processes to run each execution unit. In simple cases, the software allocates
one process per Step. Each process sits in an infinite loop executing each of its Steps
that has work to do, and sleeping when all Steps are quiescent. The execution engine
is responsible for monitoring the status of these processes, starting new ones if any
should fail, and shutting down the entire entourage on demand.

Figure 3 illustrates what happens when a Step is invoked. The Step use the
LabBase get operation to discover whether there are any Materials in its input
queue, and, if so, to obtain the fields of each Material needed to perform its
computation. Usually, these fields were placed in the database by a previous Step
and are obtained via the LabBase mechanism for accessing Step-data as if it were
directly attached to Materials. The Step changes the field-names in the retrieved
Material to the field-names used by its Worker, and passes the Material to its Worker
as an ordinary Perl5 object.

289

The Worker converts the object to whatever format its component requires and
passes it to the component. The component performs its computation and returns the
results to the Worker. The Worker converts the component’s result into a Perl5
object with the format required by LabFlow, and passes it back to the Step. The
Step changes the field-names in the result to those used in the database. It associates
the result with the Material, and forwards the ensemble to its Routers.

The Routers decide where the Material should be sent next. This is usually
another Step (technically, the State representing the input queue of the next Step), but
it may be a failure State, a terminal success State, or any other State. The Routers can
examine the results of the Worker and any fields of the Material. The Material may
be routed to multiple next States which allows the Material to flow down multiple
paths in parallel.

Figure 3: Execution of a Step.

The Step attaches the routing decision to the result, and then uses the LabBase
put operation to store the result in the database as a LabBase-Step and to move the
Material to its next State or States. The software performs the database update and
routing tasks as an atomic transaction to ensure that even if the system were to crash
at an inopportune moment, the database would not contain the results of the Step
while the Material remained in the previous State, nor would the Material be moved
to the next State without the result being placed in the database. LabFlow relies on
LabBase mechanisms described previously to achieve the required atomicity.

The software can also operate on lists of Materials instead of just one Material at-
a-time as described here.

290

LabFlow Summary

LabFlow makes it easier to create a LIMS by providing facilities for orchestrating the
execution of components. Workers encapsulate the vagaries of invoking
components, capturing their outputs, and coping with failures. Steps handle database
access. Routers control the order in which components execute. States keep track of
the progress of Materials as they advance through the workflow. The LabFlow
engine acts as a scheduler to carry out the work specified by the above elements.

It would be useful to extend the system to handle workflows involving multiple
Materials. Suppose we expand our example to include expression monitoring, in
which cDNAs are arrayed on a chip and probed with different libraries. It is natural
to think of this as a two dimensional process whose materials are chips (which we
would like to think of as groups of cDNAs) and libraries, and whose result is a two-
dimensional matrix indicating expression level as a function of cDNA and library. In
broad terms, the workflow for this process would include the following Steps: (1)
prepare chip for probing; (2) prepare library for probing; (3) probe; (4) analyze the
results. It seems intuitive to regard the chip as the Material for step (1), the library as
the Material for step (2), and the pair as the Materials for steps (3) and (4). This
complicates our previously simple view of Materials “flowing through” a workflow.
We may need to adopt two perspectives: a sample-tracking view, in which we regard
a workflow as describing how a Material travels from Step-to-Step through a process,
and a task-completion view, in which we regard a workflow as describing the process
needed to accomplish an arbitrary task. While more general, the latter is also more
complex, and we have yet to work out all its implications.

Another useful extension would be to handle workflows involving related
Materials. We earlier mentioned three important kinds of inter-Material relationships,
namely, derived-from, grouping, and part/whole. If LabBase and LabFlow were
extended to represent these relationships in a direct manner, it would allow us to
represent the example database and workflow more naturally. Instead of combining
clones and sequence-reads into a single kind of Material, each could exist
independently. And instead of coordinating multiple reads per clone in the sequence-
assembly workflow, we could handle this through an explicit clone-analysis
workflow. We see this as an important benefit, since the central theme of our work is
to simplify LIMS construction by eliminating arcane design tasks and reducing what
remains to its most natural form.

Conclusion

The LabBase and LabFlow systems described in this chapter are the latest in a series
of systems we have built to tackle the problems of data management and workflow
management for large scale biological research projects. We and our colleagues have
used the predecessor systems for several projects at the Whitehead/MIT Center for

291

Genome Research and are beginning to use the current systems for projects there and
elsewhere. Though the software is incomplete in many ways, it is proven technology
that in our hands, at least, greatly reduces the work of creating laboratory informatics
systems.

While we welcome others to use our software, we believe there is greater value in
the ideas. The total quantity of code is modest, comprising about 10,000 lines of
Perl5. It would not be hard to reproduce the ideas in other contexts, and we
encourage others to do so.

References

1. Sargent, R., D. Fuhrman, T. Critchlow, T.D. Sera, R. Mecklenburg, G.
Lindstrom, and P. Cartwright. The Design and Implementation of a Database
For Human Genome Research. in Eighth International Conference on Scientific
and Statistical Database Management. 1996. Stockholm, Sweden: IEEE
Computer Society Press.
Kerlavage, A.R., M. Adams, J.C. Kelley, M. Dubnick, J. Powell, P. Shanmugam,
J.C. Venter, and C. Fields. Analysis and Management of Data from High
Throughput Sequence Tag Projects. in 26th Annual Hawaii International
Conference on System Sciences. 1993: IEEE Computer Society Press.
Clark, S.P., G.A. Evans, and H.R. Garner, Informatics and Automation Used in
Physical Mapping of the Genome, in Biocomputing: Informatics and Genome
Projects, D. Smith, Editor. 1994, Academic Press: New York. p. 13-49.
Rozen, S., L.D. Stein, and N. Goodman, LabBase: A Database to Manage
Laboratory Data in a Large-Scale Genome-Mapping Project. IEEE
Transactions on Engineering in Medicine and Biology, 1995. 14: p. 702-709.
Stein, L.D., S. Rozen, and N. Goodman. Managing Laboratory Workflow With
LabBase. in 1994 Conference on Computers in Medicine (CompMed94). 1994.
Stein, L., A. Marquis, E. Dredge, M.P. Reeve, M. Daly, S. Rozen, and N.
Goodman. Splicing UNIX into a Genome Mapping Laboratory. in USENIX
Summer 1994 Technical Conference. 1994: USENIX.
Goodman, N., S. Rozen, and L.D. Stein. Building a Laboratory Information
System Around a C+ +-based Object-Oriented DBMS. in 20th International
Conference on Very Large Data Bases. 1994. Santiago de Chile, Chile: The
Very Large Data Bases (VLDB) Endowment Inc.

8. Mohan, C., G. Alonso, R. Guenthoer, M. Kamath, and B. Reinwald. An
Overview ofthe Exotica Research Project on Workflow Management Systems. in
6th International Workshop on High Performance Transaction Systems. 1995.
Asilomar, CA.
Mohan, C., Tutorial: State ofthe Art in Workflow Management System Research
and Products, http://www.almaden.ibm.com/cs/exotica/sigmod96.eps. 1996,
IBM Almaden Research Center.

10. Hollingsworth, D., The Workflow Reference Model,
http://www.aiai.ed.ac.uk:80/project/wfmc/. 1994, Workflow Management
Coalition.

2.

3.

4.

5.

6.

7.

9.

292

1 1. Fayad, M. and D.C. Schmidt, Object-Oriented Application Frameworks.
Communications of the ACM, 1997. 40(10): p. 32-28.

12. Durbin, R. and J.T. Mieg, A C. elegans Database, Documentation, code and data
available from anonymous FTP servers at lirmm.lirmm.fr, cele.mrc-
Imb.cam.ac.uk and ncbi.nlm.nih.gov. 1991

13. Chen, I.-M.A. and V.M. Markowitz, An Overview of the Object-Protocol Model
(OPM) and OPM Data Management Tools. Information Systems, 1995. 20(5):

14. McHugh, J., S. Abiteboul, R. Goldman, D. Quass, and J. Widom, Lore: A
Database Management System for Semistructured Data. SIGMOD Record,

15. Buneman, P., S. Davidson, G. Hillebrand, and D. Suciu. A Query Language and
Optimization Techniques for Unstructured Data. in ACM Conference on
Management of Data (SIGMOD). 1996. Montreal Quebec.

16. Altschul, S.F., W. Gish, W. Miller, and D.J. Lipman, Basic Local Alignment
Search Tool. Journal of Molecular Biology, 1990. 215: p. 403-410.

17. Cattell, R., Object Data Management Revised Edition: Object-Oriented and
Extended Relational Database Systems. 1994, Reading, MA: Addison-Wesley.

18. Orfali, R., D. Harkey, and J. Edwards, The Essential Distributed Objects
Survival Guide. 1996, New York: John Wiley & Sons.

19. Green, P., PHRAP Documentation,
http://www.mbt.washington.edu/phrap.docs/phrap.html. 1996, University of
Washington.

20. Sutton, G., 0. White, M.D. Adams, and A.R. Kerlavage, TIGR Assembler: A
New Tool for Assembling Large Shotgun Sequencing Projects. Genome Science
& Technology, 1995. 1: p. 9-19.

21. Pearson, W.R., Rapid and Sensitive Sequence Comparison with FASTP and
FASTA. Methods in Enzymology, 1990. 183: p. 63-98.

22. Green, P., SWAT, CROSS_MATCH Documentation,
http://www.mbt.washington.edu/phrap.docs/general.html. 1996, University of
Washington.

http://www.mbt.washington.edu/phrap.docs/phred.html. 1996, University of
Washington.

p. 393-418.

1997. 26(3): p. 54-66.

23. Green, P., PHRED Documentation,

INDEX

This page intentionally left blank.

INDEX

A

Abstraction level, in KEGG data, 64, 65f
Accessions, gi’s Vs, 15–16
Ace database (ACEDB) language

of Agricultural Genome Information Sys-

of bioWidgets, 257–259
of Human Gene Mutation Database

(HGMD),101
of OPM multidatabase tools, 194f

tem (AGIS), 166f

in Agricultural Genome Information Sys-
tem (AGIS), 165, 168–172, 173f

vs. biowidgets, 257

availability of, 277
client server of, 273–274
definition language of, 268–269
file format of, 270–271 16–17
history of, 265–267
performance of, 276–277
portability of, 275–276
query language of, 272–273
vs. other databases, 271–272
web address of, 277 B
web interface of, 274–275

ASCII, 213
ASN. I (Abstract Syntax Notation) conver-

Ace database (ACEDB) manager, 265–278 sion, 13-14
and BioKleisli, 205, 207, 208

Asserted-diagrams table, 39
Assignment, in conceptual translations,

Associations, multi-axial, 109–1 11
Atlas spatial coordinates, in Edinburgh

Mouse Atlas, 132–133

Administration, of SRS, 228–229
Agricultural Genome Information System

Balancing the model, 42
Berkeley Drosophila Genome Project

Best hit, in metabolic reconstruction, 39
Bidirectional best hit, in metabolic recon-

(AGIS), 163–173 (BDGP), 141–142
architecture of, 166f
browse mode in, 168
database links in, 168f
databases of, 164t–165t Binary relations
future of, 173
implementation of, 165–166
main menu of, 167f
query mode in, 169–171
table maker mode in, 171–173
web address of, 163

struction, 39

in KEGG data, 65, 75
object dictionary approach for, 107–108

Bins map strategy, 153
Biocatalysis/biodegradation database, 44
Biochemical pathways, 63–76. See also

Kyoto Encyclopedia of Genes and
Genomes (KEGG)Alignment tools, in Biology Workbench,

Amino acid sequences, in SRS, 221
Analysis modules, in Biology Workbench,

Analysis packages, and biomedical data inte-

Analysis tools, in Biology Workbench,

Annotation, in bioWidget displays, 147
Annotation classes, in FlyBase, 147
Applets, 256 and CORBA, 210
Application parameters, in SRS, 221, 222f
Application programs, in LIMS, 280–281
Architecture

243–244 data organization of, 70
Bioinformatics

challenges in, 5-6
definition of, 2-3
technology development history of, 1–2

BioKleisli, 201–210
biomedical queries in, 207–208

237–238

gration, 201–210. See also BioKleisli

242–243 collection programming language (CPL)
in, 205–206

complex type model in, 203–205

GBD query in, 208–209
as generic driver, 209–2 10
non-human homolog search in, 208, 209

296

as uniform language, 202
vs. OPM, 210

Biology Workbench, 233–244
analysis modules in, 237–238
BW.cgi environment in, 235–236
databases in, 237, 241–242
HTML environment in, 235–236
module use in, 236
program input and output in, 236

rationale for, 233–234
sessions in, 237
subroutines in, 236–237 58
system overview in, 238–241

web address of, 234

CGSC (E. Coli Genetic Stock Center Data-
base), 175–1 83. See also E. Coli Ge-
netic Stock Center Database (CGSC)

Chemical compounds, in KEGG, 71
Chromosome,canonical, 176–177
Citrate cycle, 72f
Class hierarchy, in EcoCyc data base, 48_49
Classification, of HOVERGEN, 26-28
Collection programming language (CPL),

queries in, 239f 205–206
in BioKleisli, 205-206

Common Lisp Interface Manager (CLIM),

Comparative analysis, of vertebrate genes,

Complex type model, BioKleisli as, 203-205
Components, in LIMS, 280–281
Compounds, in EcoCyc, 54–55
Comprehensive map, 94, 95f, 96f
Conceptual data model, 249
Conceptual translations, 16–1 7
CORBA (Common Request Broker Archi-

tools in, 242–243 21-33

Biomedical data, and analysis packages,
201–210. See also BioKleisli

Biomedical queries, in BioKleisli, 207–208
Bioseq sets, 14–15
BioTk, 256
BioWidgets,255–262

architecture of, 257–259 tecture)
BioTk in, 256
consortium of, 261
future work of, 261–262
genome annotation in, 259–260
Java™ in, 256
users of, 260–261
visualization solutions in, 257 (EBI))

and BioKleisli, 210
in bioWidgets, 258
CORBA prototypes in, 252
CORBA wrappers in, 250–252
and EBI database, 245–253 (See also

European Bioinformatics Institute

BLAST,23, 144, 207, 221, 223, 238, 256,

BMP gene, phylogenetic tree of, 23f
Boehringer Manheim Biochemical Path-

BRITE, 75 Cystic fibrosis, 82f
Browse mode, in Agricultural Genome Infor-

and IDL interface, 247–249

in SRS, 229–230
281 in OPM, 198

Curation, of data. See Data curation
ways,44 CUSTALW, 238–239

mation System (AGIS), 168
BW.cgi environment, 235–236 D

D. Melanogaster, 141
Data, heterogeneous, 105–1 16. See also

SENSELAB
C

C-API, 216,218 Data access
C++ programming language, in OPM, 198
Canonical chromosome, 176–177
Central repository, of bio Widget consortium,

CGI (common gateway interface) script

in FlyBase, 145–146
in Human Gene Mutation Database

(HGMD), 102
261 in SRS, 214

Data analysis
in Biology Workbench, 234–236
in KEGG, 66–67
in OPM, 198 also BioKleisli)

in Biology Workbench, 237–238,242–243
and biomedical integration, 201–210 (See

in SRS, 221

297

of vertebrate genes, 21-33

in FlyBase, 144
in WIT/WIT2 (What is there?), 43

of E. Coli Genetic Stock Center Database
(CGSC), 180, 182

in FlyBase, 143
in Maize DB, 157–158
in OMIM (Online Mendelian Inheritance

Data extensions, in Edinburgh Mouse Atlas,

Data formats of SRS, 220

development lessons in, CGSC in,

of MaizeDB, 153–154
Data coordination 182–183

Database directory and schema library, 191
Data curation Database links

of Agricultural Genome Information Sys-

of CGSC, 177
of FlyBase, 144
of MaizeDB, 154–155
of National Center for Biotechnology In-

formation (NCBI), 11–12, 12f

tem (AGIS), 168f

in Man), 83–84

139 ofOMOM, 81

ASN.l in, 13-14 Database management
incompatibility of, 234, 245
tag-value format in, 13

LabBase in, 279–291 (See also LabBase)
Object Management Group (OMG) in, 246
object-protocol model tools for, 190-191

sequence management tools in, of Biol-

Data interconnections. See also Database
links in SENSELAB, 106-107

ogy Workbench, 242
National Center for Biotechnology Infor-

mation (NCBI) on, 11–12, 12f
Data management. See Database manage- of SRS, 228–229

ment

model as, 187–199. See also Object-
protocol model

Database management, in KEGG, 67-69
DBGET/LinkDB system in, 67_68
KEGG system in, 68-69
relational database system in, 69

Data management tools, object-protocol

Data model, conceptual, 249 Database query software, of HOVERGEN,

Database query tools, in object-protocol
Data organization. See also Database struc- 28-3 1

ture
in EcoCyc, 48–50 model, 192_194
in KEGG, 70–72 Database structure

abstraction level in, 64, 65f
binary relations in, 65
network types in, 66-67

of Agricultural Genome Information Sys-

of bioWidgets, 257–259 Databases
of Human Gene Mutation Database

of OPM multidatabase tools, 194f

Data representation, in KEGG, 64–67 of Agricultural Genome Information Sys-

of bioWidgets, 257–259
of Edinburgh Mouse Atlas, 131
of Human Gene Mutation Database

of OPM multidatabase tools, 194f

in Biology Workbench, 237,241–242

tem (AGIS), 166f

Data structure
(HGMD), 101

tem (AGIS), 166f

(HGMD), 101 organization of, 59
DBGETLinkDB system, 67–68
Dehydrogenase, 41
Derivation rules, of object-protocol model,

Data submission, in Edinburgh Mouse Atlas,

Data treatment, of HOVERGEN, 24–25
Data views Diagram-role table, 38

in Edinburgh Mouse Atlas, 129–131
in FlyBase, 148–149
in SRS, 223–225
table view in, 223–224

137–139
190

Dispersion measurement, in GDB, 91–93
Distributed structure, in FlyBase, 142
Domain Tack Forces (DTF), 253
Drosophilidae, data base for, 141–150. See

DATABANKS, 225, 228f also FlyBase
Database design. See also Database structure

298

E European Bioinformatics Institute (EBI),

E. coli
245–253

conceptual data model in, 249
CORBA interface in, 246–247
CORBA prototypes in, 252

Cyc) CORBA wrappers in, 250–252
generic approach in, 249

strategy of, 246

database website for, 44
EcoCyc data base of, 47–60 (See also Eco-

E. Coli Genetic Stock Center Database
(CGSC), 175–183 queries in, 249

curation in, 180, 182
developmentof, 175–177

lessons learned from, 182–1 83
quality control in, 180, 182
query examples in, 177–1 80, 18 1 f
reusable parts of, 177
web address of, 175

European Drosophila Genome Project

European Molecular Biology Laboratory

Expressed sequence tag (EST), 15
External use, vs. internal use, 182–1 83

featuresof, 175–177 (EDGP), 141–142

(EMBL), 213

EcoCyc, 47–60
compounds in, 54–55 F
data of, 4748
data organization of, 48–50 FASTA, 23,223,238,260
gene-reaction schematic in, 51,52f Federation, vs. warehousing, 4–5
genes of, 50 “Fetch-and-store”-interface, 284
genomic-map displays in, 56–57 Flat files, 245–246
graphical user interface of, 48 FlyBase, 141–150
lessons learned from, 59–60
metabolic-map overview in, 55–56
pathways in, 54
proteins in, 52–54
reactions in, 52
retrieval operations in, 58
software architecture and distribution in,

web address of, 44

atlas spatial coordinates in, 132–133
atlas temporal coordinates in, 133–134
data extensions in, 139
data submission in, 137–139
database structure in, 13 1
navigation in, 136–137
overview of, 129–131
painting in, 138
viewing coordinates in, 134–136
voxel model in, 13 1
warping in, 138–139 sentation, 38

annotation classes in, 147
consolidated data bases of, 141–142
data coordination within, 144
data curation in, 143
data responsibility subdivisions in, 142
data views in, 148–149
database links in, external, 144

literature database in, 142–143, 144
public access to, 145–146
sequence representations in, 146–148
server update schedule in, 146

58–59 hyperlinks in, 148

Edinburgh Mouse Atlas, 129–1 39

Forced parsing, 2 15–2 16
Formats, data

ASN.1 in, 13–14
incompatibility of, 234, 245
tag-value format in, 13

Frame knowledge representation system

Function diagrams, for metabolism repre-
(FRS), 4849

Element search, in KEGG network, 69
EMBL, homology information of, 21–22
Entity-Attribute-Value (EAV), in SENSE- G

LAB, 113–116
ENTREZ, vs. HOVERGEN, 32
Enzymatic reactions, in KEGG, 71
Eshcerichia coli. See E. Coli
Eulerian angles, 135–136

GAIA system, 259–260
GBD query, in BioKleisli, 208–209
GDB (Genome Database), 85–97. See also

Genome Database (GDB)

299

GenBank™ database query software of, 28–31
and databases, other, 32
growth rate of, 28f
limitations of, 32–33
perspectives of, 33
scope and content of, 24
sequence selection of, 25–26
sequence type definitions of, 22–24
similarity search of, 25–26

HTML, in Biology Workbench, 235–236
Human bone protein-2B (BMP2B), 23
Human Gene Mutation Database (HGMD),

homology information of, 21–22
sequence identifiers in, 15

Gene catalogs, in KEGG, 70
Gene Expression Database (GXD), 124–1 26
Genera software, 177, 182
Genes. See also specific types, e.g., BMP

gene
in biochemical pathways, 63–76 (See also

Kyoto Encyclopedia of Genes and
Genomes (KEGG))

symbols for, in HGMD, 101–102
Genetics, OMIM in, 78 99–103
Genome, annotation of, 259–260
Genome Database (GDB), 85–97

data access in, 102
data coverage and structure in, 101
outlookfor, 103
utility of, 99–100
web address of, 99

in FlyBase, 148
in SRS, 220

dispersion measurement in, 9 1–93
linear alignment in, 87–90
map display in, 94–95, 96f
map integration in, 93–94
map query in, 86–87
nonlinear alignment in, 90, 91f
OPM tools for, 196

Hyperlinks. See also Links, database

Hypertext navigation, 58
Hypertext objects, in Agricultural Genome

Information System (AGIS), 173
Genome maps, in KEGG, 70
Genome project, NCBI scale-up efforts for,

GenomeNet, 64t, 68t

Gi’s Vs accessions, 15–16
GKB Editor, 50 Icarus, 214–215
Grammars, 2 15 Identifiers
Graphical interface, of HOVERGEN, 28–31
Graphical user interface

18

Genomic-map displays, in EcoCyc, 56–57 I

in LabBase, 283
in metabolic reconstruction system, 38
of National Center for Biotechnology In-

of sequence, 14–16

of bioWidgets, 255–256
of EcoCyc, 48

Grasper-CL, 58f, 59
formation (NCBI), 13

Implementation issues, in object-protocol
model, 198

H Indexing, in SRS, 214–216

H. influenzae, in EcoCyc data base, 48
H. pylori, in EcoCyc data base, 48
Heterogeneous textual databanks, 192, Interfaces

Integrated data, for molecular biology re-

Integrating database (ID), of NCBI, 16–18
search, 11–18

21 3–230. See also Sequence Retrieval
System (SRS) of bioWidgets, 255–256

of Biology Workbench, 234

Common Lisp Interface Manager (CLIM) Hierarchical associations, 112–1 13
Homologous sequences, of vertebrate genes,

Homology, definition of, 22–24

application examples of, 32
availability of, 33
classification of, 26–28
data treatment of, 24–25

as, 58

of EcoCyc, 48

IDL as, 247–249
Java™ as, 258
of KEGG, 66–67
of LabBase, 284

21–33 CORBA as, 246–247

HOVERGEN, 21–33 of HOVERGEN, 28–31

300

of OPM, 192–195, 198
of SRS, 2 18–220

Interpretation free, 13 1
ISMAP graphics, 173

LabFlow execution engine in, 288–290
LabFlow management system in, 286–288
protocols in, 279–28 1

Launching, in SRS, 22 1, 222f
Linear alignment, in GDB, 87–90
Linear map browser, in EcoCyc, 57f
Linking, in SRS, 216–218, 220
Links, database

J

Japanese GenomeNet Service, 64t

Java™, 256, of CGSC, 177
JavaBeansTM, 259 of FlyBase, 144

of Agricultural Genome Information Sys-
DBGET/Link in, 68t tem (AGIS), 168f

of MaizeDB, 154–155
of National Center for Biotechnology In-

of OMIM, 81
of SRS, 220

K formation (NCBI), 11–12, 12f

KEGG (Kyoto Encyclopedia of Genes and
Genomes), 63–76. See also Kyoto En-
cyclopedia of Genes and Genomes
(KEGG)

Knowledge acquisition problem, 59–60
Kyoto Encyclopedia of Genes and Genomes

Locuslite query, MaizeDB, 161–162
Longest monotonic chain, 90

M

Main menu, of Agricultural Genome Infor-

MaizeDB,151–162

(KEGG), 63–76
abstraction level in, 64,65f
binary relations in, 65
data organization in, 70–72
data representation in, 64–67
database management systems in, 67–69
future directions in, 75–76
navigation with, 72–73
network comparison with, 73
network types in, 66–67
objectives of, 63–64
pathway reconstruction with, from binary

pathway reconstruction with, references

web addresses for, 64t

mation System (AGIS), 167f

data content of, 152–153
data entry in, 154–155
database design of, 153–154
database links in, external, 154–1 55
future directions in, 159
locuslite query in, 161–162
periodic computation in, 157–158
real-timecomputation in, 156–157

relations, 74 short locus query form in, 160
web address of, 44, 152

in, 73–74 Management, of database
Object Management Group (OMG) in, 246
object-protocolmodel tools for, 190–191
in SENSELAB, 106–107
sequence management tools in, of Biol-

L ogy Workbench, 242
SRS in, 228–229

LabBase,279–291 Map browser, linear, in EcoCyc, 57f
Map display, in GDB, 94–95, 96f
Map integration, in GDB, 93–94
Map query, in GDB, 86–87
Mapstrategy, bins, 153
Mapping, object-relational, 25 1
MEDLINE, 12
Mendelian Inheritance in Man, 77
Message definition, asn.all in, 13–14
Metabolic-map, of EcoCyc, 55–56

management system of, 281–282
object typing in, 283
protocols for, 279–280
put and get operations in, 284

LabFlow, 284,285f, 286–289
Laboratory information management system

LabBase management system in, 281–282
LabBase objects in, 283–285

(LIMS)

30 1

Metabolic Pathway Database, 38
Metabolic reconstruction systems, 37–45.

See also WIT/WIT2 (What is there?)

NeuronDB, 106
Nigrostriatal neurons, 111
Nomenclature, in FlyBase, 146
Non-human homolog search, BioKleisli for,

Nonlinear alignment, in GDB, 90,9 1 f
Nucleic acids tools, in Biology Workbench,

Nucleotide sequences, in SRS, 221

databases for, 44
Minimization, of dispersion, 93f 208,209
Model-View-Controller (MVC) paradigm,

ModelDB, 106 243
Models, balancing of, 42
Module use, in biology Workbench, 236
Molecular biology

257–258

abstraction levels in, 65f O
integrated research data for, 11–18

Molecular catalogs, in KEGG, 71
Molecular reactions, in KEGG, 71–72
Monotonic chain, longest, 90
Mouse Genome Database (MGD), 119–126.

See also Edinburgh Mouse Atlas

Object class hierarchy, SENSELAB, 11 2
Object dictionary approach, 107–108
Object identifiers, in LabBase, 283
Object Management Group (OMG), 246
Object-protocol model, 187–199

data management tools of, 190–191
database query tools in, 192–194
database query tools in, applications of,

development of, 187–188
features of, 188–190
implementation issues in, 198
multidatabase tools in, 194–196
multidatabase tools in, applications of,

queries in, 190

beginnings of, 120–122
current status of, 122–1 24
future of, 126
web address for, 123f 196–197

Mouse Genome Informatics, 125–1 26
Multidatabase tools, in object-protocol

Multiple object instances, 109–110
Mutations, in HGMD, 99–103

model, 194_196

197–198

N retrofitting tools of, 191–196
Object references, in LabBase, 283

N-ary associations, 108–112 Object-relational mapping, 251
Nackus-Naur Form, 215 Object Request Broker (ORB), 247, 250f
National Center for Biotechnology Informa- OdorDB, 106

tion (NCBI), 11–18 Olfactory receptor DB, 105
OMIM (Online Mendelian Inheritance in on ASN.l conversion, 13–14

on data interconnections, 11–12, 12f
integrating database (ID) in, 16–1 8
scale-up efforts at, 18
sequence identifiers in, 15–16
sequence record types of, 14–15

in Edinburgh Mouse Atlas, 136–1 37
with KEGG, 72–73
of Mouse Genome Database (MGD), 123f

Information), 11–1 8. See also National
Center for Biotechnology Information
(NCBI) neighboring in, 81

Nervous system, heterogeneous data on,
105–116. See also SENSELAB

Network comparison, with KEGG, 73
Network types, in KEGG data, 66-67

Man), 77–84
allelic variants in, 80
allied resources in, 81–82
citations in, 80
clinical synopses in, 79–80

Navigation curation of, 83-84
database growth of, 78f
edit history in, 80
entry identification in, 79
external links in, 81
future of, 84
gene map in, 80

search in, 80–81
update log in, 81
user comments in, 79
web address of, 77

NCBI (National Center for Biotechnology

302

Operands, in SRS, 216–217
OPM, vs. BioKleisli, 210
ORFs, in metabolic reconstruction, 39, 41
Ortholog group tables, in KEGG, 70–71
Orthologous genes, in HOVERGEN, 31f

in Agricultural Genome Information Sys-

in BioKleisli, 207–208
in Biology Workbench, 239f
in E. Coli Genetic Stock Center Database

in European Bioinformatics Institute

tem (AGIS), 169–171

Orthology, definition of, 22–24 (CGSC), 177–180, 181f

(EBI), 249
P in GDB, 86–87

Painting, in Edinburgh Mouse Atlas, 138
Paralogy, definition of, 22–24
Parsing, in SRS, 214–216
Paths of reasoning, computation of, 75
Pathway reconstruction, with KEGG, 73–74
Pathways

in Genome Database (GDB), 86–87
in HOVERGEN, 28–31
in MaizeDB, 160, 161–162
in object-protocol model, 190, 192–194
in OPM, 192–195
in SRS, 216–218

in EcoCyc, 54
in model balancing, 42

Periodic computation, in MaizeDB, 157–158
Perl (Practical Extraction and Report Lan-

Phenome, in FlyBase, 148–149
Phylogenetic trees, and protein multiple

Polymorphism, of protein-coding sequences

Program input and output, in Biology Work-

Protein-2B, of human bone, 23
Protein-coding sequences, in HOVERGEN,

Protein multiple alignment, and phyloge-

R

Reactions, in EcoCyc, 52
Real-time computation, in MaizeDB,

Record types, sequence, 14–15
Redundancy identification, of HOVERGEN,

Relational databases, 202

guage), 236

156–157
alignment, 27

(CDS’s), 26, 27t 24–25

bench, 236 and CORBA, 251
in KEGG, 69
vs. ACEDB, 277

24–26 27t

netic trees, 27

Remote Procedure Call (RPC), 247
Retrieval operations, in EcoCyc, 58
Retrofitting tools, in object-protocol model,

Rhamnose catabolism, 55f
Protein-role table, 38 191–196
Protein tools, in Biology Workbench, 243
Proteins, in EcoCyc, 52–54
Proteome, in FlyBase, 148–149
Protocol classes, 187, 190 S
Public access, to FlyBase, 145–146
PubMed, 12
Put and get operations, in LabBase, 284

Scale-up efforts, at NCBI, 18
Schemaeditor, ofOPM, 191
Search, of elements, in KEGG network, 69
Segmented sets, 14

Q SENSELAB, 105–116

Quality control databases of, 105–106
data management challenges in, 106–107

Entity-Attribute-Value(EAV) design in,

hierarchical associations in, 112
N-ary associations in, 108–112
object class hierarchy in, 112
object dictionary approach in, 107–108

at bioWidget consortium, 261

(CGSC), 180, 182
in E. Coli Genetic Stock Center Database 113–116

Query(ies)
in Ace database (ACEDB) manager,

272–273
Sequence identifiers, 15–16

303

conversion to ‘gi’ identifiers in, 17–18
Sequence management tools, in Biology

Sequence record types, 14–15
Sequence representations, in FlyBase,

Sequence retrieval, in HOVERGEN, 28
Sequence Retrieval System (SRS), 192,

in BioKleisli, 207
in CGSC database, 176

Workbench, 242

146–148 T

Table maker mode, in Agricultural Genome
Information System (AGIS), 17 1–173

Table view, 223–224
Tag-value format, 13
TCA cycle, 72f, 73
Temporal coordinates, in Edinburgh Mouse

Theiler stages, 134
Time scales, 133
Token list, 214–215
Tracking, in conceptual translations, 1 6 17
Type constructors, in LabBase, 283

213–230
administration of, 228–229
application parameters in, 221,222f
application results in, processing of,

application results in, viewing of, 223–225
core features of, 214
data analysis in, 221
DATABANKS feature of, 225, 228f
development history of, 213
future works of, 229–230
indexing in, 214–216
interfaces of, 218

linking in, 216–218
parsing in, 214–216
querying in, 216–218 UNIX, 234
servers of, 229
user functionality of, 226–227,228f
web interface of, 218–220

222–223
Atlas, 133–134

launching in, 221,222f U

Universal coordinate system, 87–88

Updates, of servers
in FlyBase, 146
inOMIM,81
in SRS, 225Sequence selection, of HOVERGEN, 25–26

Serls, D., 256
Servers, of SRS, 229
Servers, updates of

in OMIM, 81
in SRS, 225

User functionality, of SRS, 226–227, 228f

in FlyBase, 146 V

Vertebrate genes, comparative analysis of,

View, in SRS, 223–225
Viewing coordinates, in Edinburgh Mouse

Visualization components, 255–262
Visualization tools, of EcoCyc, 50
Voxel model, 13 1

Short locus query form, in MaizeDB, 160 21–33
Similarity search, of HOVERGEN, 25–26
Similarity search programs, 23
Site mirrors, 145–146 Atlas, 134–136
Software architecture, in EcoCyc, 58–59
SoyBase, 44
Spatial coordinates, in Edinburgh Mouse At-

las, 132–133
Stanford RH map, 88f
“Star” schema, 109–110 W
Storage capacity, of ACEDB, 277
Strain query, in CGSC, 177–180, 181f
Subroutines, in Biology Workbench,

Substrates, in model balancing, 42
Swiss Protein Data Bank, in metabolic recon-

Sybase, 280 tem (AGIS), 163

Warehousing, vs. federation, 4–5
Warping, in Edinburgh Mouse Atlas,

Web address(es)
236–237 138–139

of ace database (ACEDB) manager, 277
of Agricultural Genome Information Sys-struction systems, 38

304

of Biology Workbench, 234

	Preliminaries
	Table of Contents
	Introduction
	NCBI: Integrated Data for Molecular Biology Reserach
	HOVERGEN: Comparative Analysis of Homologous VerteBrate Genes
	WIT/WIT2: Metabolic Reconstruction Systems
	ECOCYC: The Resource and the Lessons Learned
	KEGG: From Genes to Biochemical Pathways
	OMIM: Online Mendelian Inheritance in Man
	GDB: Integrating Genomic Maps
	HGMD: The Human Gene Mutation Database
	SENSELAB: Modelling Heterogenous Data on the Nervous System
	The Mouse Genome Database and the Gene Expression Database: Genotype to Phenotype
	The Edinburgh Mouse Atlas: Basic Structure and Informatics
	FlyBase: Genomic and Post-Genomic Viewpoints
	MaizeDB: The Maize Genome Database
	AGIS: Using the Agricultural Genome Information System
	CGSC: The E.Coli Genetic Stock Center Database
	OPM: Object-Protocol Model Data Management Tools '97
	Biokleisli: Integrating Biomedical Data and Analysis Packages
	SRS: Analyzing and Using Data from Heterogenous Textual Databanks
	Biology Workbench: A Computing and Analysis Environment for the Biological Sciences
	EBI: CORBA and the EBI Databases
	Biowidgits: Reusable Visualization Components for Bioinformatics
	ACEDB: The ACE Database Manager
	LABBASE: Data and Workflow Management for Large Scale Biological Reseearch
	Index

